91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP9021代做、代寫Python程序語言

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 2

COMP**21, Trimester 3, 2023

1. General matter

1.1. Aims. The purpose of the assignment is to:

• design and implement an interface based on the desired behaviour of an application program;

• practice the use of Python syntax;

• develop problem solving skills.

1.2. Submission. Your program will be stored in a file named polygons.py. After you have developed and

tested your program, upload it using Ed (unless you worked directly in Ed). Assignments can be submitted

more than once; the last version is marked. Your assignment is due by November 20, 10:00am.

1.3. Assessment. The assignment is worth 13 marks. It is going to be tested against a number of input files.

For each test, the automarking script will let your program run for 30 seconds.

Assignments can be submitted up to 5 days after the deadline. The maximum mark obtainable reduces by

5% per full late day, for up to 5 days. Thus if students A and B hand in assignments worth 12 and 11, both

two days late (that is, more than 24 hours late and no more than 48 hours late), then the maximum mark

obtainable is 11.7, so A gets min(11.7, 11) = 11 and B gets min(11.7, 11) = 11. The outputs of your programs

should be exactly as indicated.

1.4. Reminder on plagiarism policy. You are permitted, indeed encouraged, to discuss ways to solve the

assignment with other people. Such discussions must be in terms of algorithms, not code. But you must

implement the solution on your own. Submissions are routinely scanned for similarities that occur when students

copy and modify other people’s work, or work very closely together on a single implementation. Severe penalties

apply.

2. General presentation

You will design and implement a program that will

• extract and analyse the various characteristics of (simple) polygons, their contours being coded and

stored in a file, and

• – either display those characteristics: perimeter, area, convexity, number of rotations that keep the

polygon invariant, and depth (the length of the longest chain of enclosing polygons)

– or output some Latex code, to be stored in a file, from which a pictorial representation of the

polygons can be produced, coloured in a way which is proportional to their area.

Call encoding any 2-dimensional grid of size between between 2 × 2 and 50 × 50 (both dimensions can be

different) all of whose elements are either 0 or 1.

Call neighbour of a member m of an encoding any of the at most eight members of the grid whose value is 1

and each of both indexes differs from m’s corresponding index by at most 1. Given a particular encoding, we

inductively define for all natural numbers d the set of polygons of depth d (for this encoding) as follows. Let a

natural number d be given, and suppose that for all d

0 < d, the set of polygons of depth d

0 has been defined.

Change in the encoding all 1’s that determine those polygons to 0. Then the set of polygons of depth d is

defined as the set of polygons which can be obtained from that encoding by connecting 1’s with some of their

neighbours in such a way that we obtain a maximal polygon (that is, a polygon which is not included in any

other polygon obtained from that encoding by connecting 1’s with some of their neighbours).

1

2

3. Examples

3.1. First example. The file polys_1.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_1.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 78.4

Area: 384.16

Convex: yes

Nb of invariant rotations: 4

Depth: 0

Polygon 2:

Perimeter: 75.2

Area: 353.44

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 3:

Perimeter: 72.0

Area: **4.00

Convex: yes

Nb of invariant rotations: 4

Depth: 2

Polygon 4:

Perimeter: 68.8

Area: 295.84

Convex: yes

Nb of invariant rotations: 4

Depth: 3

Polygon 5:

Perimeter: 65.6

Area: 268.96

Convex: yes

Nb of invariant rotations: 4

Depth: 4

Polygon 6:

Perimeter: 62.4

Area: 243.36

Convex: yes

Nb of invariant rotations: 4

Depth: 5

Polygon 7:

Perimeter: 59.2

Area: 219.04

Convex: yes

Nb of invariant rotations: 4

Depth: 6

Polygon 8:

Perimeter: 56.0

Area: 196.00

Convex: yes

Nb of invariant rotations: 4

4

Depth: 7

Polygon 9:

Perimeter: 52.8

Area: 174.24

Convex: yes

Nb of invariant rotations: 4

Depth: 8

Polygon 10:

Perimeter: 49.6

Area: 153.76

Convex: yes

Nb of invariant rotations: 4

Depth: 9

Polygon 11:

Perimeter: 46.4

Area: 134.56

Convex: yes

Nb of invariant rotations: 4

Depth: 10

Polygon 12:

Perimeter: 43.2

Area: 116.64

Convex: yes

Nb of invariant rotations: 4

Depth: 11

Polygon 13:

Perimeter: 40.0

Area: 100.00

Convex: yes

Nb of invariant rotations: 4

Depth: 12

Polygon 14:

Perimeter: 36.8

Area: 84.64

Convex: yes

Nb of invariant rotations: 4

Depth: 13

Polygon 15:

Perimeter: 33.6

Area: 70.56

Convex: yes

Nb of invariant rotations: 4

Depth: 14

Polygon 16:

Perimeter: 30.4

Area: 57.76

Convex: yes

Nb of invariant rotations: 4

Depth: 15

Polygon 17:

Perimeter: 27.2

Area: 46.24

Convex: yes

Nb of invariant rotations: 4

5

Depth: 16

Polygon 18:

Perimeter: 24.0

Area: 36.00

Convex: yes

Nb of invariant rotations: 4

Depth: 17

Polygon 19:

Perimeter: 20.8

Area: 27.04

Convex: yes

Nb of invariant rotations: 4

Depth: 18

Polygon 20:

Perimeter: 17.6

Area: 19.36

Convex: yes

Nb of invariant rotations: 4

Depth: 19

Polygon 21:

Perimeter: 14.4

Area: 12.96

Convex: yes

Nb of invariant rotations: 4

Depth: 20

Polygon 22:

Perimeter: 11.2

Area: 7.84

Convex: yes

Nb of invariant rotations: 4

Depth: 21

Polygon 23:

Perimeter: 8.0

Area: 4.00

Convex: yes

Nb of invariant rotations: 4

Depth: 22

Polygon 24:

Perimeter: 4.8

Area: 1.44

Convex: yes

Nb of invariant rotations: 4

Depth: 23

Polygon 25:

Perimeter: 1.6

Area: 0.16

Convex: yes

Nb of invariant rotations: 4

Depth: 24

>>> polys.display()

6

The effect of executing polys.display() is to produce a file named polys_1.tex that can be given as

argument to pdflatex to produce a file named polys_1.pdf that views as follows.

7

3.2. Second example. The file polys_2.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_2.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 37.6 + 92*sqrt(.**)

Area: 176.64

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 2:

Perimeter: 17.6 + 42*sqrt(.**)

Area: **.92

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 3:

Perimeter: 16.0 + 38*sqrt(.**)

Area: 60.80

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 4:

Perimeter: 16.0 + 40*sqrt(.**)

Area: 64.00

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 5:

Perimeter: 14.4 + 34*sqrt(.**)

Area: 48.96

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 6:

Perimeter: 16.0 + 40*sqrt(.**)

Area: 64.00

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 7:

Perimeter: 12.8 + 30*sqrt(.**)

Area: 38.40

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 8:

Perimeter: 14.4 + 36*sqrt(.**)

Area: 51.84

Convex: yes

Nb of invariant rotations: 1

9

Depth: 1

Polygon 9:

Perimeter: 11.2 + 26*sqrt(.**)

Area: 29.12

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 10:

Perimeter: 14.4 + 36*sqrt(.**)

Area: 51.84

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 11:

Perimeter: 9.6 + 22*sqrt(.**)

Area: 21.12

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 12:

Perimeter: 12.8 + ***sqrt(.**)

Area: 40.96

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 13:

Perimeter: 8.0 + 18*sqrt(.**)

Area: 14.40

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 14:

Perimeter: 12.8 + ***sqrt(.**)

Area: 40.96

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 15:

Perimeter: 6.4 + 14*sqrt(.**)

Area: 8.96

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 16:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 31.36

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 17:

Perimeter: 4.8 + 10*sqrt(.**)

Area: 4.80

Convex: yes

Nb of invariant rotations: 1

10

Depth: 9

Polygon 18:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 31.36

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 19:

Perimeter: 3.2 + 6*sqrt(.**)

Area: 1.92

Convex: yes

Nb of invariant rotations: 1

Depth: 10

Polygon 20:

Perimeter: 9.6 + 24*sqrt(.**)

Area: 23.04

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 21:

Perimeter: 1.6 + 2*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 1

Depth: 11

Polygon 22:

Perimeter: 9.6 + 24*sqrt(.**)

Area: 23.04

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 23:

Perimeter: 8.0 + 20*sqrt(.**)

Area: 16.00

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 24:

Perimeter: 8.0 + 20*sqrt(.**)

Area: 16.00

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 25:

Perimeter: 6.4 + 16*sqrt(.**)

Area: 10.24

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 26:

Perimeter: 6.4 + 16*sqrt(.**)

Area: 10.24

Convex: yes

Nb of invariant rotations: 1

11

Depth: 6

Polygon 27:

Perimeter: 4.8 + 12*sqrt(.**)

Area: 5.76

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 28:

Perimeter: 4.8 + 12*sqrt(.**)

Area: 5.76

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 29:

Perimeter: 3.2 + 8*sqrt(.**)

Area: 2.56

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 30:

Perimeter: 3.2 + 8*sqrt(.**)

Area: 2.56

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 31:

Perimeter: 1.6 + 4*sqrt(.**)

Area: 0.64

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon **:

Perimeter: 1.6 + 4*sqrt(.**)

Area: 0.64

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon 33:

Perimeter: 17.6 + 42*sqrt(.**)

Area: **.92

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 34:

Perimeter: 16.0 + 38*sqrt(.**)

Area: 60.80

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 35:

Perimeter: 14.4 + 34*sqrt(.**)

Area: 48.96

Convex: yes

Nb of invariant rotations: 1

12

Depth: 3

Polygon 36:

Perimeter: 12.8 + 30*sqrt(.**)

Area: 38.40

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 37:

Perimeter: 11.2 + 26*sqrt(.**)

Area: 29.12

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 38:

Perimeter: 9.6 + 22*sqrt(.**)

Area: 21.12

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 39:

Perimeter: 8.0 + 18*sqrt(.**)

Area: 14.40

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 40:

Perimeter: 6.4 + 14*sqrt(.**)

Area: 8.96

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 41:

Perimeter: 4.8 + 10*sqrt(.**)

Area: 4.80

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon 42:

Perimeter: 3.2 + 6*sqrt(.**)

Area: 1.92

Convex: yes

Nb of invariant rotations: 1

Depth: 10

Polygon 43:

Perimeter: 1.6 + 2*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 1

Depth: 11

>>> polys.display()

13

The effect of executing polys.display() is to produce a file named polys_2.tex that can be given as

argument to pdflatex to produce a file named polys_2.pdf that views as follows.

14

3.3. Third example. The file polys_3.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_3.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 2:

Perimeter: 51.2 + 4*sqrt(.**)

Area: 117.28

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 3:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 4:

Perimeter: 17.6 + 40*sqrt(.**)

Area: 59.04

Convex: no

Nb of invariant rotations: 2

Depth: 1

Polygon 5:

Perimeter: 3.2 + 28*sqrt(.**)

Area: 9.76

Convex: no

Nb of invariant rotations: 1

Depth: 2

Polygon 6:

Perimeter: 27.2 + 6*sqrt(.**)

Area: 5.76

Convex: no

Nb of invariant rotations: 1

Depth: 2

Polygon 7:

Perimeter: 4.8 + 14*sqrt(.**)

Area: 6.72

Convex: no

Nb of invariant rotations: 1

Depth: 1

Polygon 8:

Perimeter: 4.8 + 14*sqrt(.**)

Area: 6.72

Convex: no

Nb of invariant rotations: 1

16

Depth: 1

Polygon 9:

Perimeter: 3.2 + 2*sqrt(.**)

Area: 1.12

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 10:

Perimeter: 3.2 + 2*sqrt(.**)

Area: 1.12

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 11:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 12:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

>>> polys.display()

The effect of executing polys.display() is to produce a file named polys_3.tex that can be given as

argument to pdflatex to produce a file named polys_3.pdf that views as follows.

17

3.4. Fourth example. The file polys_4.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_4.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 18.88

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 2:

Perimeter: 3.2 + 5*sqrt(.**)

Area: 2.00

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 3:

Perimeter: 1.6 + 6*sqrt(.**)

Area: 1.76

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 4:

Perimeter: 3.2 + 1*sqrt(.**)

Area: 0.88

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 5:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 6:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 7:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 8:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

19

Depth: 1

Polygon 9:

Perimeter: 1.6 + 1*sqrt(.**)

Area: 0.24

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 10:

Perimeter: 0.8 + 2*sqrt(.**)

Area: 0.16

Convex: yes

Nb of invariant rotations: 2

Depth: 0

Polygon 11:

Perimeter: 12.0 + 7*sqrt(.**)

Area: 5.68

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 12:

Perimeter: 2.4 + 3*sqrt(.**)

Area: 0.88

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 13:

Perimeter: 1.6

Area: 0.16

Convex: yes

Nb of invariant rotations: 4

Depth: 0

Polygon 14:

Perimeter: 5.6 + 3*sqrt(.**)

Area: 1.36

Convex: no

Nb of invariant rotations: 1

Depth: 0

>>> polys.display()

The effect of executing polys.display() is to produce a file named polys_4.tex that can be given as

argument to pdflatex to produce a file named polys_4.pdf that views as follows.

20

4. Detailed description

4.1. Input. The input is expected to consist of ydim lines of xdim 0’s and 1’s, where xdim and ydim are at

least equal to 2 and at most equal to 50, with possibly lines consisting of spaces only that will be ignored and

with possibly spaces anywhere on the lines with digits. If n is the x

th digit of the y

th line with digits, with

0 ≤ x < xdim and 0 ≤ y < ydim , then n is to be associated with a point situated x × 0.4 cm to the right and

y × 0.4 cm below an origin.

4.2. Output. Consider executing from the Python prompt the statement from polygons import * followed

by the statement polys = Polygons(some_filename). In case some_filename does not exist in the working

directory, then Python will raise a FileNotFoundError exception, that does not need to be caught. Assume

that some_filename does exist (in the working directory). If the input is incorrect in that it does not contain

only 0’s and 1’a besides spaces, or in that it contains either too few or too many lines of digits, or in that

some line of digits contains too many or too few digits, or in that two of its lines of digits do not contain the

same number of digits, then the effect of executing polys = Polygons(some_filename) should be to generate

a PolygonsError exception that reads

Traceback (most recent call last):

...

polygons.PolygonsError: Incorrect input.

If the previous conditions hold but it is not possible to use all 1’s in the input and make them the contours

of polygons of depth d, for any natural number d, as defined in the general presentation, then the effect of

executing polys = Polygons(some_filename) should be to generate a PolygonsError exception that reads

Traceback (most recent call last):

...

polygons.PolygonsError: Cannot get polygons as expected.

If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons

of depth d, for any natural number d, as defined in the general presentation, then executing the statement

polys = Polygons(some_filename) followed by polys.analyse() should have the effect of outputting a first

line that reads

Polygon N:

with N an appropriate integer at least equal to 1 to refer to the N’th polygon listed in the order of polygons

with highest point from smallest value of y to largest value of y, and for a given value of y, from smallest value

of x to largest value of x, a second line that reads one of

Perimeter: a + b*sqrt(.**)

Perimeter: a

Perimeter: b*sqrt(.**)

with a an appropriate strictly positive floating point number with 1 digit after the decimal point and b an

appropriate strictly positive integer, a third line that reads

Area: a

with a an appropriate floating point number with 2 digits after the decimal point, a fourth line that reads one

of

Convex: yes

Convex: no

a fifth line that reads

Nb of invariant rotations: N

21

with N an appropriate integer at least equal to 1, and a sixth line that reads

Depth: N

with N an appropriate positive integer (possibly 0).

Pay attention to the expected format, including spaces.

If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons of depth d, for any natural number d, as defined in the general presentation, then executing the statement polys = Polygons(some_filename) followed by polys.display() should have the effect of producing a file named some_filename.tex that can be given as argument to pdflatex to generate a file named

some_filename.pdf. The provided examples will show you what some_filename.tex should contain.

• Polygons are drawn from lowest to highest depth, and for a given depth, the same ordering as previously

described is used.

• The point that determines the polygon index is used as a starting point in drawing the line segments

that make up the polygon, in a clockwise manner.

• A polygons’s colour is determined by its area. The largest polygons are yellow. The smallest polygons

are orange. Polygons in-between mix orange and yellow in proportion of their area. For instance, a

polygon whose size is 25% the difference of the size between the largest and the smallest polygon will

receive 25% of orange (and 75% of yellow). That proportion is computed as an integer. When the value

is not an integer, it is rounded to the closest integer, with values of the form z.5 rounded up to z + 1.

Pay attention to the expected format, including spaces and blank lines. Lines that start with % are comments.

The output of your program redirected to a file will be compared with the expected output saved in a file (of a

different name of course) using the diff command. For your program to pass the associated test, diff should

silently exit, which requires that the contents of both files be absolutely identical, character for character,

including spaces and blank lines. Check your program on the provided examples using the associated .tex files,

renaming them as they have the names of the files expected to be generated by your program.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫股票指標 代做股票公式 代寫大智慧公式
  • 下一篇:MATH4063代做、代寫C++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    日韩视频免费直播| 国产欧美中文在线| 一本久道久久久| 欧美日韩在线精品| 午夜国产一区| 黄色一区三区| 黄色亚洲大片免费在线观看| 午夜精品一区二区在线观看| 91首页免费视频| 91香蕉视频mp4| 91亚洲精品一区二区乱码| av高清久久久| 国内精品久久国产| 亚洲久色影视| 午夜在线一区| 日本电影欧美片| 欧美日韩一区二区三区四区五区| 91成人国产精品| 欧美一区二区三区不卡| 欧美精品一区二区三区很污很色的| 精品国产一区a| 国产精品乱码一区二三区小蝌蚪| 国产精品区一区二区三| 亚洲综合免费观看高清在线观看| 丁香激情综合五月| 国产精品99久久久| 99久久精品国产观看| 国语自产精品视频在线看8查询8| 亚洲美女一区| 欧美日韩综合在线| 精品久久五月天| 最新欧美精品一区二区三区| 亚洲国产你懂的| 国产主播一区二区| 午夜久久tv| 色诱视频网站一区| 日韩一区二区高清| 亚洲丝袜精品丝袜在线| 日本大胆欧美人术艺术动态| 国产精品资源在线观看| 午夜久久久久| 91行情网站电视在线观看高清版| 日韩欧美色电影| 亚洲精品中文在线观看| 韩国一区二区在线观看| 欧美日韩高清免费| 欧美在线不卡一区| 中文字幕精品一区| 麻豆视频一区二区| 欧美日韩国产成人精品| 在线观看日韩一区| 国产精品传媒入口麻豆| 美女网站一区二区| 一区二区视频在线观看| 欧美色精品在线视频| 日本一区二区视频在线| 美女视频黄 久久| 国内自拍一区| 7777女厕盗摄久久久| 亚洲色大成网站www久久九九| 久久99精品久久久| 亚洲欧洲精品一区| 欧美电影免费观看完整版| 亚洲一区二区在线免费观看视频 | 六月婷婷色综合| 黑人一区二区三区四区五区| 51精品视频一区二区三区| 一区二区三区中文字幕| 97se亚洲国产综合在线| 在线亚洲精品福利网址导航| 中文字幕乱码久久午夜不卡| 久久99久久99精品免视看婷婷 | 色婷婷av一区| 亚洲图片你懂的| av在线不卡免费看| 欧美美女网站色| 日本在线不卡视频| 99riav国产精品| 蜜桃久久久久久| 欧美日韩国内| 久久亚洲一级片| 国产酒店精品激情| 欧美日韩亚洲另类| 视频一区二区中文字幕| 一区二区不卡在线视频 午夜欧美不卡'| 精品国产青草久久久久福利| 久久99精品网久久| 欧洲人成人精品| 天堂成人免费av电影一区| 日韩午夜免费视频| 亚洲精品亚洲人成人网在线播放| 欧美激情无毛| 欧美国产一区二区在线观看| 99视频精品全部免费在线| 欧美一级黄色片| 国产最新精品精品你懂的| 日本高清无吗v一区| 亚洲成人动漫一区| 亚洲欧美网站| 午夜久久久久久久久久一区二区| 国产欧美日韩一区二区三区在线| 国产精品不卡在线观看| 国产一区美女| 最新国产の精品合集bt伙计| 国产自产在线视频一区| 亚洲国产高清在线观看视频| 最好看的中文字幕久久| 在线亚洲一区二区| 亚洲国产精品影院| 国产精品亚洲产品| 亚洲图片有声小说| 久久国产成人| 日本视频一区二区三区| 色久综合一二码| 精品一区二区三区的国产在线播放| 欧美无乱码久久久免费午夜一区| 精品一区二区影视| 欧美xxxxx裸体时装秀| 91麻豆精品秘密| 亚洲精品国产高清久久伦理二区| 亚洲一区高清| 欧美aaaaa成人免费观看视频| 欧美精品在线一区二区| 国产91丝袜在线观看| 久久久99久久精品欧美| 在线日韩中文| 污片在线观看一区二区| 欧美精品一二三| 久久九九国产| 欧美伊人精品成人久久综合97| 日韩精品欧美成人高清一区二区| 欧美性高清videossexo| 国产不卡视频一区| 国产精品不卡一区| 91黄视频在线观看| 91在线精品一区二区| 亚洲婷婷综合色高清在线| 久久综合狠狠综合久久综青草| 国产九色精品成人porny| 一区二区三区中文字幕电影 | 91精彩视频在线| av不卡一区二区三区| 一级日本不卡的影视| 欧美精品自拍偷拍动漫精品| 91网站在线播放| 亚洲超丰满肉感bbw| 欧美草草影院在线视频| 亚洲精品国产精品国自产观看| 欧美a级一区二区| 欧美国产乱子伦 | 亚洲国产三级| 日韩不卡一区二区| 久久婷婷成人综合色| 国产伦精品一区| av一本久道久久综合久久鬼色| 亚洲欧美国产毛片在线| 欧美人妖巨大在线| 日韩午夜视频在线观看| 国产精品1区2区| 亚洲五码中文字幕| 久久久亚洲午夜电影| 久久久久久久久久久一区| 91日韩在线专区| 久久97超碰色| 一区二区日韩av| 久久久久88色偷偷免费| 欧美综合在线视频| 91久久亚洲| 91在线视频网址| 国产在线精品视频| 午夜国产精品一区| 国产精品久久久久7777按摩 | 国产美女精品人人做人人爽| 亚洲毛片av在线| 国产日韩成人精品| 欧美一区二区三区在线视频 | 亚洲摸摸操操av| 久久九九全国免费| 日韩一区二区在线播放| 色94色欧美sute亚洲线路一ni | 久久久天堂av| 日韩欧美国产麻豆| 91久久国产综合久久| 国产精品女主播一区二区三区| 欧美日韩喷水| 欧美在线网站| 粗大黑人巨茎大战欧美成人| 激情综合激情| av成人动漫在线观看| 国产一区二区三区精品欧美日韩一区二区三区 | 欧美系列亚洲系列| 色偷偷成人一区二区三区91| 亚洲一区二区四区| 一本色道久久综合亚洲精品高清 | 久久精品一区四区| 2020国产精品| 久久久久久久久久久久电影| 欧美不卡一区二区| 亚洲精品在线免费观看视频| 欧美一区二区在线播放|