91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    国产原创一区二区三区| 99re这里只有精品首页| 亚洲精品国产品国语在线app| 2023国产精品视频| 精品国产百合女同互慰| 精品乱码亚洲一区二区不卡| 欧美电影免费观看高清完整版 | 女同性一区二区三区人了人一| 成人app下载| 怡红院精品视频在线观看极品| 国产一区二区三区四区三区四| 欧美日韩国产亚洲一区| 亚洲高清网站| 亚洲一区二区免费看| 色视频一区二区| 欧美三区免费完整视频在线观看| 在线看不卡av| 精品美女被调教视频大全网站| 久久久九九九九| 中文字幕一区三区| 伊人色综合久久天天人手人婷| 亚洲夂夂婷婷色拍ww47| 日本欧美一区二区三区| 国产精品小仙女| 成人免费看视频| 伊人久久亚洲影院| 一本色道a无线码一区v| 欧美精品一二三| 国产日产欧美一区| 亚洲五月六月丁香激情| 久久99精品视频| 91蝌蚪国产九色| 免费在线国产精品| 99久久综合精品| 国产精品无遮挡| 久久精品一区二区三区不卡| 欧美日韩成人综合在线一区二区| 精品乱码亚洲一区二区不卡| 亚洲免费观看高清| 国内久久婷婷综合| 精品成人久久| 欧美日韩午夜在线| 国产精品久久久久久亚洲伦 | 国产精品乡下勾搭老头1| 国产一区二区中文| 欧美日韩一区二区在线观看| 欧美韩国日本不卡| 奇米综合一区二区三区精品视频| 成人妖精视频yjsp地址| 亚洲欧美高清| 国产日韩精品一区二区三区在线| 婷婷综合五月天| 91香蕉视频污| 欧美日韩性生活| 亚洲免费在线观看| 不卡的av中国片| 色欧美乱欧美15图片| 国产农村妇女精品| 亚洲国内自拍| 精品国产网站在线观看| 欧美精选一区二区| 亚洲人成网站在线| 成人av在线播放网址| 国产精品入口66mio| 欧美精品一区二区三区在线播放| 日韩经典一区二区| 在线观看成人一级片| 91精品国产一区二区三区香蕉| 一区二区三区毛片| 欧美日韩精品免费观看视频完整| 欧美日韩国产色站一区二区三区| 亚洲黄色免费网站| 欧美福利一区| 欧美mv日韩mv国产| 国产米奇在线777精品观看| 香蕉国产精品偷在线观看不卡| 中国色在线观看另类| 成人免费看黄yyy456| 欧美精品18+| 久久精品理论片| 久久久蜜桃一区二区人| 亚洲免费av高清| 国产精品xnxxcom| 国产欧美一区二区精品秋霞影院| 国产成人免费在线| 欧美性色aⅴ视频一区日韩精品| 亚洲午夜在线电影| 国产日韩精品久久| 亚洲精品日韩一| 亚洲毛片av| 亚洲男人天堂一区| 影音先锋久久久| 中文字幕在线观看一区| 不卡一区在线观看| 2023国产精品视频| 91麻豆免费在线观看| 久久青草国产手机看片福利盒子 | 国产乱人伦精品一区二区在线观看| 一本大道久久a久久综合婷婷 | 亚洲国产欧美日韩| 亚洲日本青草视频在线怡红院| 欧美午夜久久| 亚洲欧美国产毛片在线| 亚洲片区在线| 亚洲一区二区四区蜜桃| 久久久久久亚洲精品杨幂换脸| 亚洲va在线va天堂| 欧美性欧美巨大黑白大战| 韩国一区二区视频| 日韩精品一区二区三区四区视频 | 91丨porny丨首页| 欧美国产一区在线| 亚洲精品欧洲| 天堂精品中文字幕在线| 国产欧美日韩在线视频| 亚洲欧美综合国产精品一区| 国产精品麻豆视频| 国产欧美日韩一区二区三区在线| 亚洲成av人片在线观看无码| 在线亚洲高清视频| 成人午夜又粗又硬又大| 欧美极品美女视频| 国产精品乱码| 久久草av在线| 亚洲精品一区二区精华| 亚洲人成高清| 免费av网站大全久久| 精品欧美一区二区久久| 激情久久五月| 蜜臀av一级做a爰片久久| 日韩一区二区在线观看| 欧美日韩高清在线一区| 亚洲国产精品一区二区久久 | 色呦呦一区二区三区| 国产精品1区二区.| 国产精品美女久久久久久| 久久精品女人的天堂av| 成人网在线播放| 亚洲精品高清在线| 欧美日韩国产在线观看| 女人天堂亚洲aⅴ在线观看| 亚洲成人动漫在线观看| 日韩欧美中文一区二区| 亚洲午夜激情在线| 狠狠色狠狠色综合系列| 国产视频一区二区三区在线观看| 亚洲一区二区三区免费观看| 高清在线成人网| 一区二区成人在线| 精品毛片乱码1区2区3区| 亚洲欧美日韩精品一区二区| 粉嫩蜜臀av国产精品网站| 一级中文字幕一区二区| 精品国产伦理网| 色欧美片视频在线观看在线视频| 91首页免费视频| 极品销魂美女一区二区三区| 中文字幕在线不卡视频| 日韩亚洲欧美一区二区三区| 亚洲少妇在线| 99精品国产一区二区三区不卡| 婷婷综合久久一区二区三区| 欧美国产综合色视频| 91精品国产综合久久香蕉的特点| 亚洲精品一区二区三区蜜桃久| 国产成人三级在线观看| 婷婷一区二区三区| 国产精品三级视频| 国产a级毛片一区| 午夜久久电影网| 91精品中文字幕一区二区三区| 日韩午夜一区| 女女同性女同一区二区三区91| 久久er精品视频| 亚洲福利一区二区三区| 国产精品免费免费| 日韩午夜中文字幕| 日本久久一区二区三区| 在线亚洲自拍| 在线精品福利| 99精品黄色片免费大全| 国产麻豆精品一区二区| 日本在线不卡一区| 亚洲国产视频网站| 亚洲视频狠狠干| 国产精品色哟哟| 欧美国产亚洲另类动漫| 2023国产精品自拍| 精品国产百合女同互慰| 日韩欧美一区在线观看| 9191成人精品久久| 欧美日本一区二区| 欧美日韩中文国产| 欧洲国内综合视频| 在线一区二区观看| 欧洲在线/亚洲| 欧美三级午夜理伦三级中视频| 麻豆久久精品| 久久综合狠狠| 欧美综合欧美视频|