91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做EF5070、代寫c/c++編程設(shè)計(jì)

時(shí)間:2023-11-30  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    亚洲视频导航| 91麻豆精品国产91久久久久| 欧美99久久| 欧美影院一区| 欧美精品在线一区| 91在线你懂得| 波多野结衣在线aⅴ中文字幕不卡| 极品美女销魂一区二区三区 | 欧美久久久影院| 欧美视频三区在线播放| 欧美色视频在线观看| 欧美日韩一本到| 欧美一区二区美女| www国产精品av| 国产精品狼人久久影院观看方式| 亚洲国产精品av| 亚洲码国产岛国毛片在线| 亚洲国产精品一区二区www| 亚洲成人tv网| 国产又粗又猛又爽又黄91精品| 国产乱淫av一区二区三区| 成人高清视频在线| 国产精品s色| 久久国产主播精品| 欧美日韩国产首页在线观看| 日韩欧美成人激情| 国产精品伦一区| 三级精品在线观看| 狠狠色丁香婷综合久久| 成人国产精品免费网站| 国语自产精品视频在线看抢先版结局 | 久久久久久穴| 欧美精品vⅰdeose4hd| 精品成人佐山爱一区二区| 中文字幕亚洲一区二区va在线| 亚洲精品视频自拍| 另类小说综合欧美亚洲| 99久久伊人精品| 99热精品在线观看| 欧美日韩国产一级二级| 久久婷婷一区二区三区| 亚洲综合网站在线观看| 国产福利一区在线| 激情欧美日韩| 欧美日韩色综合| 中文字幕中文乱码欧美一区二区| 香蕉av福利精品导航| 成人精品免费看| 国产亚洲在线| 精品国产一区二区三区久久久蜜月 | 亚洲视频你懂的| 黄页视频在线91| 亚洲区国产区| 日韩一区二区三| 亚洲一区二区精品3399| 国产成人亚洲综合色影视| 日韩一级在线| 精品国产区一区| 日韩福利视频网| 欧美性久久久| 日韩精品资源二区在线| 亚洲国产综合色| 欧美日韩一区二区三| 欧美精品xxxxbbbb| 亚洲宅男天堂在线观看无病毒| 懂色av一区二区三区免费观看| 国产精品免费看| 国产午夜精品久久久久久久| 麻豆精品在线播放| 99国产精品99久久久久久粉嫩| 精品久久久久久久久久久久包黑料| 亚洲在线视频网站| 欧美日本中文| 91精品国产欧美日韩| 日韩精品电影一区亚洲| 亚洲二区三区四区| 26uuu亚洲| 国产成人精品免费| 欧美日韩综合不卡| 天堂在线一区二区| 一区二区三区四区五区精品| 久久久美女毛片| 国产盗摄一区二区| 欧美日韩一区二区三区四区| 亚洲国产欧美一区二区三区丁香婷| 色综合一个色综合亚洲| 欧美成人三级电影在线| 国产综合色精品一区二区三区| 免费在线日韩av| 一区二区三区四区亚洲| 亚洲一级高清| 国产精品电影一区二区| 午夜电影亚洲| 久久精品一区二区| 91视频观看免费| 久久亚洲捆绑美女| av电影天堂一区二区在线观看| 欧美理论在线播放| 国产在线一区二区| 欧美日韩综合不卡| 韩国av一区二区| 欧美精品aⅴ在线视频| 精品一区二区三区久久| 欧美日韩亚洲国产综合| 九九**精品视频免费播放| 欧美日韩午夜在线视频| 国内精品久久久久影院一蜜桃| 欧美性欧美巨大黑白大战| 精品一区二区三区免费视频| 欧美日韩视频在线第一区| 国产一区二区精品久久| 91精品国产91综合久久蜜臀| 国产精品亚洲第一区在线暖暖韩国| 欧美日韩成人综合| 成人做爰69片免费看网站| 欧美电影免费提供在线观看| 99久久精品情趣| 中文av一区二区| 中文精品一区二区三区| 午夜视频一区二区| 欧美群妇大交群的观看方式| 国产成人亚洲精品青草天美| 欧美大白屁股肥臀xxxxxx| 欧美日韩国产综合视频在线| 亚洲图片你懂的| 久久综合伊人| 国产精品一级二级三级| 久久久国际精品| 日韩视频久久| 久久丁香综合五月国产三级网站| 91精品在线观看入口| 欧美日韩久久| 午夜精品影院在线观看| 欧美福利电影网| 好看的亚洲午夜视频在线| 午夜精品久久久久久久99水蜜桃| 欧美剧情片在线观看| 99国产精品视频免费观看| 亚洲欧美日韩系列| 欧美日韩精品福利| 欧美日韩成人一区二区三区| 午夜精品免费在线| 宅男在线国产精品| 亚洲网站啪啪| 久久国产人妖系列| 欧美韩国日本综合| 色八戒一区二区三区| 91色porny在线视频| 亚洲成年人影院| 久久综合国产精品| 久久国产日韩欧美| 欧美韩国一区| 久久se精品一区精品二区| 欧美国产精品v| 在线观看91视频| 欧美日韩一区二区三区在线视频 | 国产精品一区二区在线观看| 国产一区二区不卡| 一区二区三区在线视频观看58| 欧美精品 日韩| 一本色道久久综合亚洲精品高清 | 视频精品一区二区| 国产亚洲视频系列| 欧美日韩国产一级片| 99热在线精品观看| jvid福利写真一区二区三区| 日本女优在线视频一区二区| 中文字幕 久热精品 视频在线 | 欧美一级片在线看| 久久国产主播| 亚洲大胆女人| 99久久免费国产| 激情文学综合插| 亚洲人成网站色在线观看| 日韩女优制服丝袜电影| 日本韩国欧美三级| 99在线|亚洲一区二区| 91网站最新地址| 国产毛片精品视频| 日韩av一级片| 亚洲午夜在线观看视频在线| 欧美激情在线看| 精品国产乱码久久久久久免费 | 在线观看av一区二区| 亚洲欧美日韩综合一区| 欧美日韩99| 99久久精品免费| 国产白丝精品91爽爽久久| 美腿丝袜亚洲色图| 午夜婷婷国产麻豆精品| 亚洲理论在线观看| 国产精品欧美一级免费| 久久久www免费人成精品| 91精品国产高清一区二区三区 | 欧美中文一区二区三区| 老鸭窝亚洲一区二区三区| 国产精品免费区二区三区观看| 国产精品99一区二区| 午夜精品剧场| 欧美色123|