91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做CMPUT 328、代寫(xiě)VAE and Diffusion Models

時(shí)間:2023-12-02  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Assignment 5
Generative Models (VAE and Diffusion Models)
CMPUT **8 - Fall 2023
1 Assignment Description
The main objective in this assignment is to implement and evaluate two of the most popular generative
models, namely Variational Auto-Encoders (VAE) and Diffusion Models. Our goal is to implement
each of these models on the FashionMNIST dataset and see how such models can generate new images.
However, instead of simply training the models on the whole dataset, we would like to be able to tell the
model from which class it should generate samples. Hence, we are going to implement class-conditional VAEs
and Diffusion Models.
Figure 1: Sample images from the FashionMNIST dataset
Note: Please the watch the video provided for this assignment for better understanding the tasks and
objectives.
2 What You Need to Do
For this assignment, 5 files are given to you:
• A5 vae submission.py
• A5 vae helper.ipynb
• A5 diffusion submission.py
• A5 diffusion helper.ipynb
• classifier.pt
You only need to submit “A5 vae submission.py”, “A5 diffusion submission.py”, and weights
of your networks (“vae.pt”, “diffusion.pt”).
1
2.1 Task 1: Conditional VAE (40%)
2.1.1 A5 vae submission.py
In this file there is a skeleton of a VAE class which you are required to complete.
1. For the VAE you need to implement the following components as specified in the code file: Encoder,
mu net (for estimating the mean), logvar net (for estimating the log-variance), class embedding module
(for properly embedding the labels), and decoder (for reconstructing the samples).
2. The forward function of the VAE class must receive the batch of images and their labels, and return
the reconstructed image, estimated mean (output of mu net), and the estimated logvar (output of the
logvar net).
3. You need to fill in the “reparameterize” method of the class given mu and logvar vectors (as provided
in the code), and implement the reparameterization trick to sample from a Gaussian distribution with
mean “mu”, and log-variance “logvar”.
4. You need to fill in the “kl loss” method of the class given mu and logvar vectors, and compute the
Kullback-Leibler (KL) divergence between the Gaussian distribution with mean “mu” and log-variance
“logvar” and the standard Gaussian distribution N (0, I). Recall that if the the mean and variance of
the a Gaussian distribution are µ and σ
2
, respectively, the KL divergence with the standard Gaussian
can be simply calculated as
KL(N (µ, σ2
)∥N (0, I)) = 1
2
Xn
i=1

2
i + µ
2
i − 1 − ln (σ
2
i
)) (1)
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VAE class and its methods. You can add as many extra functions/classes as
you need in this file. You can change the arguments passed to the “ init ” method of the class based
on your needs.
8. Finally, you need to complete the “load vae and generate” function at the bottom of the file, which
merely requires you to define your VAE.
2.1.2 A5 vae helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done with
your implementation of the VAE class you can start running the blocks of this file to train your model, save
the weights of your model, and generate new samples. You only need to specify some hyperparameters such
as batch size, optimizer, learning rate, and epochs, and of course your model.
There is also a brief description of the VAEs at the beginning of this file.
2
2.2 Task 2: Conditional Diffusion Model (60%)
2.2.1 A5 diffusion submission.py
In this file there are skeletons of a VarianceScheduler class, NoiseEstimatingNet class, and the DiffusionModel
class, which you are required to complete.
1. For the VarianceScheduler class you need to store the statistical variables required for making the
images noisy and sampling from the diffusion model, such as βt, αt, and ¯αt. You also need to complete
the “add noise” method which receives a batch of images and a batch of timesteps and computes the
noisy version of the images based on the timesteps.
2. You need to complete the NoiseEstimatingNet class, which is supposed to be a neural network (preferably a UNet) which receives the noisy version of the image, the timestep, and the label of the image,
and estimates the amount of noise added to the image. You are encouraged to look at the network
architectures you have seen in the notebooks provided to you on eClass resources. Note that you can
add extra functions and classes (e.g., for time embedding module) in this file.
3. You need to complete the “DiffusionModel” class. The forward method of the class receives a batch of
input images and their labels, randomly adds noise to the images, estimates the noise using NoiseEstimating network, and finally computes the loss between the ground truth noise and the estimated noise.
The forward method outputs the loss.
4. Most importantly, you need to fill in the “generate sample” method of the DiffusionModel class which
receives the number of images to be generated along with their labels, and generates new samples using
the diffusion model.
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes and their
methods. You can add as many extra functions/classes as you need in this file.
8. Finally, you need to complete the “load diffusion and generate” function at the bottom of the file,
which merely requires you to define your VarianceScheduler and NoiseEstimatingNet.
2.2.2 A5 diffusion helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done
with your implementation of the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes you
can start running the blocks of this file to train your model, save the weights of your model, and generate
new samples. You only need to specify some hyperparameters such as batch size, optimizer, learning rate,
and epochs, and of course your model.
3
There is also a brief description of the Diffusion Models at the beginning of this file, including how to
make the noisy images, and how to sample from the diffusion model, which could be helpful.
3 Deliverables
• The correct (working) implementation of the explained modules in the previous section.
• For the diffusion model use a number of diffusion steps less than or equal to 1000 for a roughly fast
image generation.
• We verify the quality of the images generated by your models by using a classifier trained over the
dataset. This classifier is provided to you in the helper notebooks, and without changing the code you
can run the corresponding blocks to load the classifier and apply it to your generated images.
• For the VAE model, a final accuracy of ≥ 65% gets a full mark and an accuracy of < 55% gets no mark.
You mark will linearly vary for any accuracy in between.
• For the Diffusion Model, a final accuracy of ≥ 60% gets a full mark and an accuracy of < 50% gets no
mark. You mark will linearly vary for any accuracy in between.
In the following you can see some sample outputs of a simple VAE and a simple DiffusionModel trained
on the FashionMNIST.
請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:代做 COMP33 Modern Technologies程序語(yǔ)言代做
  • 下一篇:ACS11001代做、 Embedded Systems程序語(yǔ)言代寫(xiě)
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶(hù)要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    亚洲精选成人| 91一区在线观看| 亚洲午夜视频在线观看| 亚洲视频资源在线| 亚洲日本一区二区三区| 亚洲色图丝袜美腿| 亚洲一区影音先锋| 亚洲一区二区三区在线播放| 一级做a爱片久久| 亚洲国产毛片aaaaa无费看| 亚洲欧美色图小说| 午夜激情一区二区| 日韩高清一级片| 狠狠色丁香久久婷婷综合_中 | 粉嫩av一区二区三区在线播放 | 国产欧美一区二区精品性| 欧美日韩亚洲高清一区二区| 欧美日韩国产系列| 日韩精品一区二区三区在线播放 | 国产欧美亚洲一区| 一本在线高清不卡dvd| 欧美三区免费完整视频在线观看| 欧美性淫爽ww久久久久无| 91精品国产综合久久久久| 欧美tickling网站挠脚心| 中文字幕免费不卡| 丝袜美腿成人在线| 国产iv一区二区三区| 欧美aa国产视频| 亚洲一区二区三区免费观看| 麻豆成人小视频| 成人美女在线观看| 精品1区2区3区4区| 色哟哟国产精品| 日韩一级在线观看| 国产精品天天看| 日韩国产高清在线| 国产露脸91国语对白| av不卡一区二区三区| 亚洲人成网站在线观看播放| 欧洲国内综合视频| 国产日产欧美精品一区二区三区| 亚洲永久精品国产| 99久久综合精品| 香蕉精品999视频一区二区 | 精品理论电影在线| 日韩精品一区二区三区三区免费| 在线综合亚洲| 国产v综合v亚洲欧| 欧美久久一级| 日本精品视频一区二区| 国产婷婷色一区二区三区四区| 一区二区三区**美女毛片| 国产成人av电影在线观看| 亚洲黄色免费| 精品国产乱码久久久久久影片| 亚洲国产成人av网| 91蝌蚪国产九色| 欧美日韩一区在线观看| 国产精品第一页第二页第三页| 国内精品国产成人国产三级粉色 | 成人av在线播放网址| 国产精品久久久久影院老司| 日本欧美大码aⅴ在线播放| 亚洲高清在线| 精品粉嫩aⅴ一区二区三区四区| 一区二区三区日韩| 午夜精品久久久久久久| 欧美1级日本1级| 91麻豆精品国产无毒不卡在线观看| 日韩美女视频19| 99在线视频精品| 欧美情侣在线播放| 午夜精品影院在线观看| 影院欧美亚洲| 久久色成人在线| 国产成人av在线影院| 在线观看91精品国产入口| 一级日本不卡的影视| 国产精品v欧美精品v日韩| 欧美va在线播放| 国产精品一区二区在线播放| 91国产丝袜在线播放| 亚洲一本大道在线| 99精品免费视频| 亚洲美女少妇撒尿| 欧美日本久久| 中文字幕一区二区三区不卡在线| 经典三级一区二区| 91久久精品日日躁夜夜躁欧美| 亚洲人xxxx| 亚洲伦理一区| 国产精品久久久久久亚洲伦 | 色悠悠久久综合| 亚洲一区二区三区自拍| 亚洲作爱视频| 国产传媒久久文化传媒| 精品视频在线看| 久久99精品久久久| 欧美伦理电影网| 国产乱码字幕精品高清av| 欧美高清性hdvideosex| 国产乱妇无码大片在线观看| 91精品免费观看| 成人黄色在线看| 2023国产精品自拍| 国产剧情在线观看一区二区| 国产欧美一区二区精品性色| 国产精品v欧美精品v日韩| 久久亚洲二区三区| 99久久99久久精品免费观看| 久久亚洲精精品中文字幕早川悠里| 99精品视频在线免费观看| 国产日韩精品一区二区三区| 欧美黄在线观看| 亚洲精选在线视频| 麻豆成人精品| 激情文学综合丁香| 久久综合九色综合97_久久久| 欧美破处大片在线视频| 亚洲精品久久久久久国产精华液| 亚洲免费影视| 久久成人麻豆午夜电影| 精品国产a毛片| 激情欧美日韩| 日韩成人免费在线| 精品国产一区二区三区忘忧草 | 午夜视频一区二区| 欧美日韩在线直播| 欧美日韩精品福利| 成人免费精品视频| 国产精品家庭影院| 色婷婷国产精品综合在线观看| 精品一区二区三区免费播放| 精品国产青草久久久久福利| 韩国一区二区三区在线观看 | 99re亚洲国产精品| 亚洲自拍偷拍av| 欧美浪妇xxxx高跟鞋交| 欧美理论在线| 麻豆国产精品官网| 久久综合久久综合久久综合| 亚洲一区二区毛片| 成人精品视频一区| 亚洲综合免费观看高清完整版在线 | 一区二区三区在线播放| 欧美精选一区二区| 国产视频一区三区| 91丨九色丨黑人外教| 日韩和欧美一区二区| 高清不卡在线观看av| 中文字幕一区二区三区四区不卡 | 亚洲v日本v欧美v久久精品| 日韩一级成人av| 欧美一级久久| 91毛片在线观看| 麻豆91在线播放| 亚洲欧美日韩精品久久久久| 91精品久久久久久久久99蜜臂 | **欧美大码日韩| 91精品在线观看入口| 精品国产乱子伦一区| 欧美大片在线观看一区| 亚洲影视资源网| 亚洲日韩成人| 粗大黑人巨茎大战欧美成人| 亚洲制服欧美中文字幕中文字幕| 久久综合一区二区| 欧美裸体一区二区三区| 国产精品日本| 欧美日韩理论| 成人免费观看av| 激情五月激情综合网| 亚洲sss视频在线视频| 国产精品高潮久久久久无| 精品成人一区二区| 5566中文字幕一区二区电影| 一本大道久久a久久精二百 | 91精品国产综合久久久久久漫画| 久久久水蜜桃av免费网站| 在线播放亚洲| 欧美日韩国产欧| 91亚洲精华国产精华精华液| 国产一区二区美女| 久久99久久99精品免视看婷婷 | 亚洲一级黄色| 一区二区三区免费看视频| 欧美一级免费观看| 欧日韩精品视频| 久久狠狠久久综合桃花| 国产日韩亚洲欧美精品| 影音先锋在线一区| 亚洲一级黄色| 亚洲一本视频| 亚洲视频福利| 在线播放亚洲| 亚洲精品一区二区三区蜜桃久| 午夜精品电影| 欧美日韩精品免费观看视频完整| 91美女视频网站|