91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 202代寫、代做Operating Systems設計

時間:2023-12-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 202: Advanced Operating Systems
University of California, Riverside
Lab #3: xv6 Threads
Due: 12/02/2022, Friday, 11:59 p.m. (Pacific time)
Overview
In this project, you will be adding kernel-level thread support to xv6. First, you will implement a new
system call to create a kernel-level thread, called clone(). Then, using the clone() system call, you will
build a simple user-level library consisting of thread_create(), lock_acquire() and
lock_release() for thread management. Finally, you will show these things work by using a user-level
multi-threaded test program.
Before your start:
1. In Makefile, set the number of CPUs to 3 (CPUS := 3). You may debug your code using one
CPU, your demo and submission should have CPUS := 3.
2. Replace kernel/trampoline.S with the one provided at the end of this document. This new
trampoline.S is also available to download from eLearn.
Background: xv6 virtual address space memory layout
In xv6, every process has its own page table that defines a virtual address space used in the user mode.
When a process enters the kernel mode, the address space is switched to the kernel’s virtual address space.
Because of this, each process has separate stacks for the kernel and user spaces (aka. user stack and kernel
stack). Also, in xv6, each PCB maintains separate objects to store process’s register values:
struct proc {
 …
struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
trapframe stores registers used in the user space when entering the kernel mode. context is for registers
in the kernel space when context-switched to another process.
Below figure illustrates the layout of a process’s virtual address space in xv6-riscv.
2
In the virtual address space, user text, data, and user stack are mapped at the bottom. At top, you can see
two special pages are mapped: trampoline and trapframe, each has the size of PGSIZE (= 4096 bytes).
The trampoline page maps the code to transition in and out of the kernel. The trapframe page maps
the PCB’s trapframe object so that it is accessible by a trap handler while in the user space (see Chapter
4 of the xv6 book for more details).
The mapping of those pages to process’s address space is done when a process is created. In fork(), it
calls proc_pagetable() which allocates a new address space and then performs mappings of
trampoline and trapframe pages. For example, in proc_pagetable()
if(mappages(pagetable, TRAPFRAME, PGSIZE,
(uint64)(p->trapframe), PTE_R | PTE_W) < 0){ ...
This means mapping the kernel object p->trapframe to the user address space defined by pagetable
at the memory location of TRAPFRAME.
Part 1: Clone() system call
In this part, the goal is to add a new system call to create a child thread. It should look like:
int clone(void *stack);
clone() does more or less what fork() does, except for the following major differences:
• Address space: Instead of creating a new address space, it should use the parent's address space.
This means a single address space (and thus the corresponding page table) is shared between the
parent and all of its children. Do not create a separate page table for a child.
• stack argument: This pointer argument specifies the starting address of the user-level stack
used by the child. The stack area must have been allocated by the caller (parent) before the call to
clone is made. Thus, inside clone(), you should make sure that, when this syscall is returned, a
child thread runs on this stack, instead of the stack of the parent. Some basic sanity check is required
for input parameters of clone(), e.g., stack is not null.
3
Similar to fork(), the clone() call returns the PID of the child to the parent, and 0 to the newly-created
child thread. And of course, the child thread created by clone() must have its own PCB. The number of
child threads per process is assumed to be at most 20.
To manage threads, add an integer type thread_id variable to PCB. The value of thread_id is 0 for the
parent process and greater than 0 (e.g., 1, 2, …) for its child threads created using clone().
There are also some modifications required for the wait() syscall.
• wait(): The parent process uses wait() to wait for a child process to exit and returns the child’s
PID. Also, wait() frees up the child’s resources such as PCB, memory space, page table, etc. This
becomes tricky for child threads created by clone() because some resources are now shared
among all the threads of the same process. Therefore, if the child is a thread, wait() must
deallocate only the thread local resources, e.g., clearing PCB and freeing & unmapping its own
trapframe, and must not deallocate the shared page table.
For simplicity, we will assume that only parent process calls clone() – a thread created by clone()
does not call clone() to create another child thread. Also, assume that a process does not call clone()
more than 20 times (i.e., up to 20 child threads). It is fine to assume that only the parent uses wait() and
the parent is the last one to exit (i.e., after all of its child threads have exited). In addition, parent and child
do not need to share file descriptors. These assumptions will make the implementation a lot easier.
Tips:
• The best way to start would be creating clone() by duplicating fork(). fork() uses
allocproc() to allocate PCB, trapframe, pagetable, etc. However, clone() must not allocate a
separate page table because the parent and child threads should share the same page table. But each
thread still needs a separate trapframe. So, modify allocproc() or create a new function (e.g.,
allocproc_thread) for clone().
• In clone(), you need to specify the child’s user stack’s starting address (hint: trapframe->sp).
• In clone(), you should map each thread's
trapframe page to a certain user space with
no overlap. One simple way would be to map
it below the parent's trapframe location. For
example, see the figure on the right. If your
child thread has a thread ID (> 0), map it to
TRAPFRAME - PGSIZE * (thread ID).
So your first child thread's trapframe is
mapped at TRAPFRAME - PGSIZE, second
one at TRAPFRAME - PGSIZE * 2, and so
on. This can easily avoid overlap.
TRAPFRAME
trapframe
trapframe …
TRAPFRAME - PGSIZE
TRAPFRAME – 2*PGSIZE
Parent’s
Child thread 1
Child thread 2 …

4
• You also need to tell the kernel explicitly the new trapframe locations for your child threads.
Update kernel/trampoline.S as explained earlier. Then, at the end of usertrapret() in
kernel/trap.c, change
 ((void (*)(uint64))trampoline_userret)(satp);
to
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME - PGSIZE * p->thread_id, satp);
for child threads. Normal processes (or thread ID == 0) should continue to use the default
TRAPFRAME address as follows:
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME, satp);
• Trampoline (not trapframe) is already mapped by the parent and it can be shared with childs. So
you must not map it again to the page table when creating child threads (doing so will crash).
Only map the trapframe of each child (see mappages() function in the background).
• wait() uses freeproc() to deallocate child’s resources, so you will need to make appropriate
changes to freeproc().
Part 2: User-level thread library
You need to implement a user-level thread library in user/thread.c and user/thread.h. How to
create a library? Once you write user/thread.c, find the line starting with ULIB in Makefile and
modify as follows:
ULIB = $U/ulib.o $U/usys.o $U/printf.o $U/umalloc.o $U/thread.o
This will compile user/thread.c as a library and make it usable by other user-level programs that
include user/thread.h.
The first thread library routine to create is thread_create():
int thread_create(void *(start_routine)(void*), void *arg);
You can think of it as a wrapper function of clone(). Specifically, this routine must allocate a user stack
of PGSIZE bytes, and call clone() to create a child thread. Then, for the parent, this routine returns 0 on
success and -1 on failure. For the child, it calls start_routine() to start thread execution with the input
argument arg. When start_routine() returns, it should terminate the child thread by exit().
Your thread library should also implement simple user-level spin lock routines. There should be a type
struct lock_t that one uses to declare a lock, and two routines lock_acquire() and
lock_release(), which acquire and release the lock. The spin lock should use the atomic test-and-set
operation to build the spin lock (see the xv6 kernel to find an example; you can use GCC’s built-in atomic
operations like __sync_lock_test_and_set). One last routine, lock_init(), is used to initialize the lock
as need be. In summary, you need to implement:
struct lock_t {
uint locked;
};
5
int thread_create(void *(start_routine)(void*), void *arg);
void lock_init(struct lock_t* lock);
void lock_acquire(struct lock_t* lock);
void lock_release(struct lock_t* lock);
These library routines need be declared in user/thread.h and implemented in user/thread.c. Other
user programs should be able to use this library by including the header "user/thread.h".
Tips: In RISC-V, the stack grows downwards, as in most other architectures. So you need to give the
correct stack starting address to clone() for the allocated stack space.
How to test:
We will be using a simple program that uses thread_create() to create some number of threads. The
threads will simulate a game of frisbee, where each thread passes the frisbee (token) to the next thread. The
location of the frisbee is updated in a critical section protected by a lock. Each thread spins to check the
value of the lock. If it is its turn, then it prints a message, and releases the lock. Below shows the program
code. This program should run as-is. Do not modify. Add this program as user/lab3_test.c
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
#include "user/thread.h"
lock_t lock;
int n_threads, n_passes, cur_turn, cur_pass;
void* thread_fn(void *arg)
{
int thread_id = (uint64)arg;
int done = 0;
while (!done) {
lock_acquire(&lock);
 if (cur_pass >= n_passes) done = 1;
 else if (cur_turn == thread_id) {
 cur_turn = (cur_turn + 1) % n_threads;
printf("Round %d: thread %d is passing the token to thread %d\n",
 ++cur_pass, thread_id, cur_turn);
 }
 lock_release(&lock);
 sleep(0);
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc < 3) {
printf("Usage: %s [N_PASSES] [N_THREADS]\n", argv[0]);
 exit(-1);
}
6
n_passes = atoi(argv[1]);
n_threads = atoi(argv[2]);
cur_turn = 0;
cur_pass = 0;
lock_init(&lock);
for (int i = 0; i < n_threads; i++) {
thread_create(thread_fn, (void*)(uint64)i);
}
for (int i = 0; i < n_threads; i++) {
wait(0);
}
printf("Frisbee simulation has finished, %d rounds played in total\n", n_passes);
exit(0);
}
It takes two arguments, the first is the number of rounds (passes) and the second is the number of threads
to create. For example, for 6 rounds with 4 threads:
$ lab3_test 6 4
Round 1: thread 0 is passing the token to thread 1
Round 2: thread 1 is passing the token to thread 2
Round 3: thread 2 is passing the token to thread 3
Round 4: thread 3 is passing the token to thread 0
Round 5: thread 0 is passing the token to thread 1
Round 6: thread 1 is passing the token to thread 2
Frisbee simulation has finished, 6 rounds played in total!
$
Test your implementation with up to 20 threads on 3 emulated CPUs.
The Code and Reference Materials
Download a fresh copy of xv6 from the course repository and add the above-mentioned functionalities.
This Lab may take additional readings and through understanding of the concepts discussed in the
handout. Especially, Chapters 2 and 4 of the xv6 book discusses the essential background for this Lab.
What to submit:
Your submission should include:
(1) XV6 source code with your modifications (‘make clean’ to reduce the size before submission)
(2) Writeup (in PDF). Give a detailed explanation on the changes you have made (Part 1 & 2). Add
the screenshots of the frisbee program results for “lab3_test 10 3” and “lab3_test 21 20”. Also, a
brief summary of the contributions of each member.
(3) Demo video showing that all the functionalities you implemented can work as expected, as if you
were demonstrating your work in person. Demonstrate the results of “lab3_test 10 3” and
“lab3_test 21 20” on three CPUs. Your video should show that xv6 is running with three CPUs
(e.g., ‘hart 1 starting’ and ‘hart 2 starting’ messages when booting up).
7
Grades breakdown:
• Part I: clone() system call: 45 pts
o clone() implementation
o modifications to wait()
o other related kernel changes
• Part II: user-level thread library: 25 pts
o thread_create() routine
o spinlock routines
• Writeup and demo: 30 pts
Total: 100 pts
8
Appendix: kernel/trampoline.S
# # code to switch between user and kernel space. # # this code is mapped at the same virtual address # (TRAMPOLINE) in user and kernel space so that # it continues to work when it switches page tables.
#
# kernel.ld causes this to be aligned # to a page boundary. #
.section trampsec
.globl trampoline
trampoline:
.align 4
.globl uservec
uservec: # # trap.c sets stvec to point here, so # traps from user space start here, # in supervisor mode, but with a # user page table. # # sscratch points to where the process's p->trapframe is # mapped into user space, at TRAPFRAME. # # swap a0 and sscratch # so that a0 is TRAPFRAME csrrw a0, sscratch, a0
 # save the user registers in TRAPFRAME sd ra, 40(a0) sd sp, 48(a0) sd gp, 56(a0) sd tp, 64(a0) sd t0, 72(a0) sd t1, 80(a0) sd t2, 88(a0) sd s0, 96(a0) sd s1, 104(a0) sd a1, 120(a0) sd a2, 128(a0) sd a3, 136(a0) sd a4, 144(a0) sd a5, 152(a0) sd a6, 160(a0) sd a7, 168(a0) sd s2, 176(a0) sd s3, 184(a0) sd s4, 192(a0) sd s5, 200(a0) sd s6, 208(a0) sd s7, 216(a0) sd s8, 224(a0) sd s9, 2**(a0) sd s10, 240(a0) sd s11, 248(a0) sd t3, 256(a0) sd t4, 264(a0) sd t5, 272(a0) sd t6, 280(a0)
# save the user a0 in p->trapframe->a0 csrr t0, sscratch sd t0, 112(a0)
 # restore kernel stack pointer from p->trapframe->kernel_sp ld sp, 8(a0)
 # make tp hold the current hartid, from p->trapframe->kernel_hartid ld tp, **(a0)
 # load the address of usertrap(), p->trapframe->kernel_trap
9
 ld t0, 16(a0)
 # restore kernel page table from p->trapframe->kernel_satp ld t1, 0(a0) csrw satp, t1 sfence.vma zero, zero
 # a0 is no longer valid, since the kernel page # table does not specially map p->tf.
 # jump to usertrap(), which does not return jr t0
.globl userret
userret:
 # userret(TRAPFRAME, pagetable) # switch from kernel to user. # usertrapret() calls here. # a0: TRAPFRAME, in user page table. # a1: user page table, for satp.
 # switch to the user page table. csrw satp, a1 sfence.vma zero, zero
 # put the saved user a0 in sscratch, so we # can swap it with our a0 (TRAPFRAME) in the last step. ld t0, 112(a0) csrw sscratch, t0
 # restore all but a0 from TRAPFRAME ld ra, 40(a0) ld sp, 48(a0) ld gp, 56(a0) ld tp, 64(a0) ld t0, 72(a0) ld t1, 80(a0) ld t2, 88(a0) ld s0, 96(a0) ld s1, 104(a0) ld a1, 120(a0) ld a2, 128(a0) ld a3, 136(a0) ld a4, 144(a0) ld a5, 152(a0) ld a6, 160(a0) ld a7, 168(a0) ld s2, 176(a0) ld s3, 184(a0) ld s4, 192(a0) ld s5, 200(a0) ld s6, 208(a0) ld s7, 216(a0) ld s8, 224(a0) ld s9, 2**(a0) ld s10, 240(a0) ld s11, 248(a0) ld t3, 256(a0) ld t4, 264(a0) ld t5, 272(a0) ld t6, 280(a0)
# restore user a0, and save TRAPFRAME in sscratch csrrw a0, sscratch, a0
 # return to user mode and user pc. # usertrapret() set up sstatus and sepc. Sret
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP201、java設計程序代做
  • 下一篇:CMPT 489代做、Program Synthesis編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    久久亚洲免费视频| yourporn久久国产精品| 美女国产一区二区| 9人人澡人人爽人人精品| 欧美成人国产| 亚洲欧美国产不卡| 在线成人高清不卡| 亚洲国产激情av| 久久精品噜噜噜成人av农村| 99re视频这里只有精品| 免费在线成人av| 2023国产精品视频| 婷婷中文字幕一区三区| 99在线精品视频| 91国产丝袜在线播放| 久久精品人人做人人综合| 污片在线观看一区二区| 99久久伊人网影院| 91福利视频网站| 亚洲自拍与偷拍| 欧美精品大片| 欧美一级二级三级乱码| 三级精品在线观看| 欧美视频观看一区| 精品国产髙清在线看国产毛片| 亚洲狼人国产精品| 欧美.日韩.国产.一区.二区| 日韩va欧美va亚洲va久久| aa级大片欧美| 欧美激情综合网| 成人精品视频一区二区三区尤物| 欧美系列一区| 51精品视频一区二区三区| 亚洲综合在线免费观看| 国产高清久久久久| 色综合久久久久久久久| 国产日本一区二区| 精品亚洲免费视频| 国产精品乱码一区二区三区| 国产亚洲一区字幕| 97se狠狠狠综合亚洲狠狠| 欧美videos大乳护士334| 国产91色综合久久免费分享| 欧美日产国产精品| 另类欧美日韩国产在线| 欧美日韩精品电影| 风间由美一区二区av101| 日韩欧美一级二级| 99久久久无码国产精品| 中文字幕一区二区三区在线不卡| 久久久久久一区| 精品视频1区2区| 天堂影院一区二区| 欧美大片日本大片免费观看| 成人午夜私人影院| 亚洲精品乱码久久久久久久久 | 欧美一区2区三区4区公司二百| 不卡av在线免费观看| 国产农村妇女毛片精品久久麻豆 | 久久影院午夜论| 欧美在线999| 国产麻豆一精品一av一免费| 欧美xingq一区二区| 激情五月播播久久久精品| 久久一日本道色综合久久| 欧美极品xxx| 国产一区999| 91麻豆精品国产91久久久| 日本午夜精品视频在线观看 | 久久女同性恋中文字幕| 国产日韩一区欧美| 欧美 亚欧 日韩视频在线| 久久久久久久久久久久久夜| 亚洲人成久久| 国产高清一区日本| 国产午夜精品一区二区三区四区| 麻豆成人91精品二区三区| 精品国产乱码久久久久久夜甘婷婷| 99精品欧美一区二区蜜桃免费 | 国产精品一区二区三区四区五区| 国产一区欧美一区| 日本视频一区二区三区| 中文一区一区三区高中清不卡| 亚洲欧美日韩国产一区二区三区 | 精品美女在线播放| 91久久精品午夜一区二区| 久久久久成人精品免费播放动漫| 亚洲欧美日本国产专区一区| 国产一区二区三区久久久久久久久| 99久久精品国产一区二区三区| 国产精品全国免费观看高清 | 一区二区三区免费看视频| 精品国产123| 777午夜精品免费视频| 久久久久久一区二区| 亚洲精品看片| 亚洲人成免费| 老色鬼久久亚洲一区二区| 亚洲一区二区高清视频| 国内精品伊人久久久久影院对白| 日韩欧美精品在线视频| 91成人免费电影| 国产日产高清欧美一区二区三区| 精品在线播放免费| 久久国产福利国产秒拍| 中文字幕高清不卡| 中文字幕在线播放不卡一区| 国产女同性恋一区二区| 亚洲欧洲三级电影| 亚洲无人区一区| 精品一区二区综合| 91在线观看下载| 在线一区视频| 欧美日韩日本视频| 国产校园另类小说区| 亚洲精品精品亚洲| 久久精品国产**网站演员| 99久久99久久精品免费观看| 91久久国产自产拍夜夜嗨| 91精品1区2区| 国产精品国产馆在线真实露脸| 国产精品高潮呻吟| 国产.欧美.日韩| 国产欧美91| 国产精品初高中精品久久| 免费观看成人鲁鲁鲁鲁鲁视频| 一区二区三区在线播| 久久天天做天天爱综合色| 亚洲人123区| 一区二区在线看| 偷窥国产亚洲免费视频| 成人妖精视频yjsp地址| 精品91在线| 日韩一区二区三区四区五区六区| 亚洲免费观看视频| 波多野结衣一区二区三区 | 国产精品一区二区三区网站| 亚洲成av人片在线观看| 中文字幕在线观看一区二区| 中文字幕av一区二区三区免费看| 欧美美女一区二区在线观看| 欧美成人r级一区二区三区| 国产精品天美传媒| 亚洲va韩国va欧美va| 女人香蕉久久**毛片精品| 噜噜噜91成人网| 国产精品乱码一区二区三区软件 | 成人国产精品视频| 欧美午夜精品电影| 蜜臀精品久久久久久蜜臀| 亚洲高清资源综合久久精品| 日韩欧美一区二区不卡| 另类的小说在线视频另类成人小视频在线| 精品9999| 亚洲欧美乱综合| 国产精品一区二区a| 中文字幕在线一区| 91久久久久| 亚洲视频网在线直播| 国产欧美日韩一区| 亚洲美女偷拍久久| 美日韩在线观看| 日本成人在线电影网| 在线一区二区三区四区五区| 午夜精品一区二区三区三上悠亚| 免费在线亚洲欧美| 蜜桃传媒麻豆第一区在线观看| 在线观看成人小视频| 久久精品国产在热久久| 日韩限制级电影在线观看| 国产真实精品久久二三区| 7777精品伊人久久久大香线蕉的| 成人性生交大片免费看在线播放| 精品欧美久久久| 国内精品亚洲| 男女激情视频一区| 欧美女孩性生活视频| 92国产精品观看| 亚洲一区日韩精品中文字幕| 欧美日韩精品欧美日韩精品| jizz一区二区| 亚洲电影在线播放| 久久伊人中文字幕| 老司机精品福利视频| 狠狠88综合久久久久综合网| 久久精品国产亚洲5555| 国产精品久久久久久妇女6080| 午夜精品视频| 亚洲小说春色综合另类电影| 欧美第一区第二区| 一本大道av伊人久久综合| 欧美全黄视频| av不卡在线播放| 久久国产剧场电影| 午夜精品久久久久久久久| 亚洲国产精品精华液2区45| 91麻豆精品国产| 欧美三级视频在线播放| 亚洲青涩在线| 最新国产拍偷乱拍精品|