91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫DAT 560M、代做R編程語言

時間:2023-12-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 1 -
DAT 560M: Big Data and Cloud Computing
Fall 2023, Mini B
Homework #4
INSTRUCTIONS
1. This is an individual assignment. You may not discuss your approach to solving these
questions with anyone, other than the instructor or TA.
2. Please include only your Student ID on the submission.
3. The only allowed material is:
a. Class notes
b. Content posted on Canvas
c. Utilize ONLY the codes we practice. Anything beyond will not get any point!
4. You are not permitted to use other online resources.
5. The physical submission is due by the next lab.
6. There will be TA office hours. See the schedule on Canvas.
ASSIGNMENT
In this assignment, we are going to practice Spark on a file named loans.csv and the file is located
in our database. In case you don’t have the file, you can get it from the dataset folder on the server.
http://server-ip/dataset/loans.csv
This dataset has information about loans distributed to poor and financially excluded people
around the world by a company called Kiva. There are a few number of columns in the dataset
and we would like to do an analysis on that by pyspark. Please answer each question and provide
a screenshot.
Part ** Initialize Spark (5 pts)
** Start the PySpark engine and load the file. This homework is a little bit complex and its
better that we assign more resources. Then, when assigning your engine, you can assign
all available CPU cores on your machine to the Spark to perform faster. To do that, just
simply put local[*] instead of local (look at the following screenshot). If it crashes or
doesn’t work properly, you are more than welcome to go back to the normal initialization
process. (2 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 2 -
2- Get to know the dataset and do a preliminary examination (for example type of columns,
summary, …) (2 pts)
3- Here, we have two identifier for the country of the loan receiver, country, and
country_code and so one is enough. Then please drop country_code. (1 pts)
Part 2- Data analysis (50 pts)
4- Find the three most loan awarded sector when the loan amount is larger than 1000. (5 pts)
5- For the top sector you found in Q4, list 6 most used activities. (5 pts)
6- Find the number of given loans per year. For that, use the year from posted_time. You
may add a new column called “year”. (5 pts)
7- Using SQL syntax, list the number of loans per sector in decreasing order where the
countries are the 3 top countries in terms of the number of received loans. (10 pts)
8- Find the top 20 countries in terms of the total loan amount they have received where the
use of the loan include the word “stock”. You may use SQL. (5 pts)
9- Do a wordcount on the “use” column. For that, consider all lower case. If you can, it’s
great to remove stopwords and then do the wordcount. It’s OK if you don’t know how to
do so. (10 pts)
10- Group the loans into 5 categories. If the loan amount is equal or larger than 50000, call it
“super large”. If less but larger or equal to 10000, call it “large”. If less but larger or
equal to 5000, call it “medium”. If less but larger or equal to 1000, call it “small”. If less,
call it “tiny”. Then, find the number of given loans to each category per gender. For
gender, only consider “male” or “female”. (10 pts)
Part 3- Feature engineering (10 pts)
1** Let’s find how many people are involved in each loan application. To find it out, look at
gender column. You can see sometimes it is one value, and sometimes more than one.
Count it for each loan and add it to the dataframe. (10 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 3 -
Part 4- Machine learning (35 pts)
12- Now let’s focus only on Retail, Agriculture, and Food sectors the remove the rest of the
rows (10 pts).
13- We like to predict the loan_amount based on sector, country, term_in_months, year, and
the new attribute you added in Q11 and drop the rest of the columns. (5 pts)
14- Prepare your data to do a prediction task. We are interested in predicting the loan amount
based on the rest of the features. (10 pts)
15- Perform a regression task for and find the Mean Squared Error and R-square of the model
(80% training, 20% testing) (10 pts). 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CSCI 2122代寫、代做C++設計程序
  • 下一篇:代寫ISOM 2007、代做 Python 程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    免费观看91视频大全| 色视频一区二区| 日本一区二区视频在线观看| 在线视频你懂得一区| 一本一道久久综合狠狠老精东影业| 成人一区二区视频| 国产精品99久| 国产一区二区三区最好精华液| 免费久久精品视频| 日韩va亚洲va欧美va久久| 香蕉加勒比综合久久| 一区二区成人在线| 夜夜揉揉日日人人青青一国产精品| 亚洲天堂福利av| 亚洲少妇最新在线视频| 亚洲天堂精品视频| 一区二区三区四区不卡视频| 亚洲三级在线看| 亚洲永久免费av| 亚洲成人tv网| 蜜臂av日日欢夜夜爽一区| 久久 天天综合| 国产伦精品一区二区三区免费迷| 狠狠色丁香婷综合久久| 国产精品一二三| www.99精品| 国产综合自拍| 99国产精品久久久久久久成人热| 一区二区精品在线| 91官网在线免费观看| 欧美精品在线一区二区三区| 欧美成人在线直播| 国产精品剧情在线亚洲| 亚洲欧美日韩国产综合在线| 午夜视频一区二区| 韩日欧美一区二区三区| 成人在线视频一区| 亚洲视频中文| 色网综合在线观看| 337p亚洲精品色噜噜噜| 亚洲国产精品高清| 日韩高清不卡在线| 成人午夜av电影| 亚洲麻豆av| 欧美日韩精品一二三区| 国产亚洲婷婷免费| 五月婷婷久久综合| 成人在线视频一区二区| 一区二区国产精品| 欧美久久久久久久久| 中文字幕一区二区三区在线不卡| 天天综合色天天综合色h| 成人网页在线观看| 在线一区视频| 亚洲天堂成人在线观看| 日韩电影在线免费看| 91亚洲男人天堂| 久久国产精品亚洲77777| 欧美一区二区三级| 夜夜嗨av一区二区三区中文字幕 | 亚洲视频在线一区二区| 秋霞影院一区二区| 欧美精品色网| 884aa四虎影成人精品一区| 国产精品理论片| 国产精品一区2区| 免费亚洲视频| 欧美激情一区二区三区蜜桃视频| 久久99国产乱子伦精品免费| 红桃视频欧美| 日韩欧美一二三四区| 五月天一区二区三区| 午夜激情一区| 91精品国产综合久久久久久漫画| 亚洲女同ⅹxx女同tv| 丁香六月久久综合狠狠色| 久久精品一区二区国产| 中文字幕在线观看一区二区| 懂色中文一区二区在线播放| 久久黄色小说| 亚洲品质自拍视频网站| 99久久亚洲一区二区三区青草| 在线亚洲一区二区| 一区二区在线免费观看| 色综合天天性综合| 欧美videofree性高清杂交| 日韩高清中文字幕一区| 9久re热视频在线精品| 国产午夜精品在线观看| 国产成人免费视频网站| 欧美影视一区二区三区| 亚洲 欧美综合在线网络| 一区二区视频在线观看| 国产精品嫩草影院com| 91天堂素人约啪| 精品国产一区久久| 成人激情黄色小说| 91精品国产综合久久精品性色| 久久激情五月激情| 色视频欧美一区二区三区| 亚洲福利一二三区| 国产精品外国| 亚洲成人7777| 免费国产一区二区| 午夜精品一区二区三区电影天堂| 一本色道久久综合亚洲精品高清| 中文字幕在线播放不卡一区| 欧美日韩在线一区二区三区| 国产人成亚洲第一网站在线播放 | 色综合久久久久久久久| 三级欧美在线一区| 在线观看不卡一区| 九色porny丨国产精品| 欧美精品第1页| 国产91丝袜在线18| 久久综合九色综合97婷婷| 91蜜桃免费观看视频| 久久免费视频色| 狠狠色噜噜狠狠色综合久| 中文字幕五月欧美| 亚洲一区二区三区四区五区午夜| 亚洲chinese男男1069| 欧美日精品一区视频| 国产乱子轮精品视频| 2014亚洲片线观看视频免费| 国产精品久久7| 亚洲与欧洲av电影| 欧美午夜精品一区二区蜜桃| 成人av电影免费在线播放| 欧美国产乱子伦| 国产一区91| 国产一区二区三区蝌蚪| 精品福利av导航| 亚洲一本视频| 午夜久久福利影院| 欧美日韩亚洲综合在线 | 中文一区在线| 图片区日韩欧美亚洲| 久久性天堂网| 亚洲国产三级在线| 欧美美女一区二区三区| 丁香激情综合五月| 久久夜色精品国产欧美乱极品| 99re热这里只有精品视频| 欧美—级在线免费片| 亚洲国产精品一区制服丝袜 | 成人综合婷婷国产精品久久蜜臀| 日韩欧美亚洲国产另类| 国产99久久久国产精品免费看| 日韩精品一区二区三区三区免费 | 夜久久久久久| 美国三级日本三级久久99| 欧美精品tushy高清| 日韩成人一区二区| 久久一区中文字幕| 成人午夜视频在线| 亚洲精品成人悠悠色影视| 一本色道久久综合亚洲aⅴ蜜桃 | 亚洲欧洲综合另类| 欧美综合在线视频| 国产传媒一区在线| 国语自产精品视频在线看抢先版结局 | 亚洲激情社区| 美女在线视频一区| 精品女同一区二区| 91视频在线看| 国产精品久久久久一区二区三区 | 亚洲国产高清一区| 日本强好片久久久久久aaa| 91精品国产品国语在线不卡| 午夜精品久久| 亚洲美女在线国产| 欧美中文字幕一二三区视频| 精品一二线国产| 国产欧美va欧美不卡在线| 午夜在线视频观看日韩17c| 成人福利视频网站| 亚洲一级电影视频| 欧美成人激情免费网| 欧美日韩综合网| 成人a免费在线看| 午夜久久久久久久久久一区二区| 亚洲精品一区二区在线观看| 久久久久91| 夜夜嗨一区二区| 成人免费视频视频| 日韩av中文字幕一区二区三区| 久久精品日产第一区二区三区高清版| 欧美日韩成人综合在线一区二区| 亚洲东热激情| 91在线看国产| 久久 天天综合| 美女任你摸久久| 樱花草国产18久久久久| 欧美精品一区二区三区蜜桃视频| 久久免费黄色| 亚洲资源av| 激情综合中文娱乐网| 成人免费毛片a| 国产在线精品一区二区三区不卡|