91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BUSI1125代做、代寫Java/python程序語言

時間:2023-12-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BUSI1125 Softwares and Tools for Data Analytics
INDIVIDUAL ASSIGNMENT
Autumn 2023/24

This individual assignment carries 100% of the total marks of this module.

Students are required to download 2 different datasets, and analyse each dataset using a
randomly assigned data analytics software.


Dataset 1 (poverty): Eradicating extreme poverty for all people everywhere by 2030 is a
pivotal goal of the 2030 Agenda for Sustainable Development. It has been recognised that
ending poverty must go hand-in-hand with strategies that build economic growth and address
a range of social needs including education, health, social protection, and job opportunities,
while tackling climate change and environmental protection. As a data analyst your objective
is to conduct an exploratory analysis to better understand the relationships/associations
between the level of income (outcome) and the selected socio-economic factors (features).

Dataset 1, extracted from the World Bank Development Indicators, includes the following
variables for 151 countries.

Variable Name Description
country Name of the country
region Region of the country
comp_edu Compulsory education, duration (years)
female_labour Ratio of female to male labour force participation rate (%)
agri_value_added Agriculture, forestry, and fishing, value added (% of GDP)
political_stability Political Stability and Absence of Violence/Terrorism: Estimated index
income_group Income group classification by the World Bank based on gross national
income (GNI) per capita (High income, Upper-middle income, Lower-
middle income, Low income)
Dataset 1 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/poverty/main/poverty.csv


Dataset 2 (wage): One of the other UN Sustainable Development Goals is about promoting
inclusive and sustainable economic growth, employment and decent work for all (Decent work
and Economic Growth). Decent work means opportunities for everyone to get work that is
productive and delivers a fair income, security in the workplace and social protection for
families, better prospects for personal development and social integration. As a data analyst
your objective is to conduct an exploratory analysis to better understand the
relationships/associations between the individual’s wage (outcome) and the selected
demographic factors (features).

Dataset 2, extracted from The United States National Longitudinal Surveys, includes the
following variables for 935 individuals.

Variable Name Description
wage Average weekly earnings (in US$)
hours Average weekly working hours
exper Years of working experience
age Age in years
marital Marital status (Married, Single)
gender Gender (Male, Female)
education Level of education (High School, College, Graduate, Post-Graduate)

Dataset 2 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/wage/main/wage.csv



Assignment requirements
Students are required to import the dataset and analyse with the assigned software (R or
Python). For descriptive and exploratory analytics and interpretations, students are required
to:

1. check data quality issues (missing values, data entry errors, inconsistencies, etc.),
perform necessary data cleansing, and briefly explain your data cleaning strategy.
2. identify the type of variables, provide appropriate summary statistics (all measures of
location and dispersion and frequencies) of each variables with appropriate
visualisations and interpretations.
3. identify the objectives of analytics based on the given dataset and scenario and identify
the relevant/appropriate relationships/associations between the outcome and feature
variables, conduct exploratory analysis with appropriate visualisations, and present
and interpret the analyses (based on DIKW pyramid).
4. write up a data analytics report with clear and effective communication.

The 1500-word assignment should include the following two sub-sections.
 Section 1: Report of descriptive and exploratory analytics of Dataset 1 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)
Section 2: Report of descriptive and exploratory analytics of Dataset 2 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)


Students are also required to submit R-scripts and Jupyter Notebook files via Moodle
submission box.

Deadline Date for Submission of Coursework
Your coursework needs to be submitted electronically via the Module Moodle page. See the
Student Services website and the programme handbook for further details of this process.
The deadline for coursework submission is 3:30pm on Wednesday, 27th of December
2023. Late submission will attract marks deduction penalty unless an extension has been
approved by Student Services. Please familiarise yourself with the extenuating circumstances
policy and process for submitting a claim.

Five marks will be deducted for each working day (or part thereof) if coursework is submitted
after the official deadline without an extension having been obtained. Except in exceptional
circumstances, late submission penalties will apply automatically unless a claim for
extenuating circumstances is made before the assessment deadline.


Coursework Submission Requirements:
A maximum word count of the assignment is 1500 words and must be adhered to.
The penalty for exceeding this limit is a five mark deduction for exceeding up to 300
words, 10 marks deduction for exceeding between 301 and 500 words, and 15
marks reduction for exceeding over 501 words.
The actual word count of the assignment must be stated by the student on the first
page (cover sheet) of the assignment.
The overall word count does include citations and quotations.
The overall word count does not include the references or bibliography at the
end of the coursework.
 The word count does not include figures and tables with numeric values and the titles
of figure and table. Any statement, interpretation, and explanation presented in
a figure or a tabular form will be included in the overall wordcount,
Appendices (mostly supporting materials that are not directly related to the assignment
and will not be considered in marking) are not included in the overall word count.
Students should prepare and submit their coursework assessments via Moodle in
the following format:
Font: Verdana 11 point
Spacing: 1.5 spaced
Margins: Normal (2.5 cm)
Referencing: Harvard citation style

Plagiarism will not be tolerated. Please consult the Business School Undergraduate Student
Handbook for more guidelines on how to present and submit your essays. It is the strong
advice of the Business School that you should avoid plagiarism by engaging in ethical and
professional academic practice.
In accordance with the University’s Quality Manual, in normal circumstances, marked
coursework and associated feedback will be returned to you within 15 working days of the
published submission deadline. Therefore, students submitting work before the published
deadline should not have an expectation that early submission will result in earlier return of
work. Where coursework will not be returned within 15 working days for good reason (for
example in circumstances where a student has been granted an extension, illness of module
convenor, or lengthy pieces of coursework), students will be informed of the timescale for the
return of the coursework and associated feedback.
Additional circumstances where coursework may not be returned within 15 working days for
good reason can include the University closure dates. Therefore, where this applies, you will
be informed in advance of the date coursework feedback will be provided to you.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:公認口碑最好的十大莆田微商,推薦十個知名的莆田鞋商家
  • 下一篇:代寫公式指標 代做選股公式 請人做股標指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    日本精品一区二区三区高清| 欧美国产97人人爽人人喊| 美女久久一区| 亚洲日本黄色| 亚洲人www| 亚洲日本成人| 国产精品一区二区你懂得| 国产农村妇女精品一二区| 国产三级精品在线不卡| 国产日韩三区| 欧美探花视频资源| 7777精品伊人久久久大香线蕉完整版 | 色婷婷av一区二区| 欧洲av在线精品| 欧美人妇做爰xxxⅹ性高电影| 欧美日韩一级大片网址| 日韩视频一区二区三区 | 青青国产91久久久久久 | 国产精品一区视频| 一本大道久久a久久精二百| 在线视频一区二区三| 欧美伦理电影网| 久久午夜免费电影| 国产精品久99| 亚洲成人动漫一区| 国产在线视频精品一区| www.爱久久.com| 亚洲看片一区| 欧美性色aⅴ视频一区日韩精品| 欧美日本一区二区三区四区 | 国产成人精品免费网站| 91色porny蝌蚪| 一区二区国产日产| 欧美日韩高清一区二区不卡| 26uuu精品一区二区三区四区在线| 国产精品福利在线播放| 视频一区视频二区中文| 国产福利精品一区二区| 国内精品久久久久国产盗摄免费观看完整版| 日韩欧美区一区二| 亚洲国产精品二十页| 亚洲成av人片在线| 成人a免费在线看| 国产精品一页| 精品剧情v国产在线观看在线| 亚洲精品成人少妇| 国产不卡视频一区二区三区| 亚洲国内在线| 日韩一级免费一区| 亚洲国产一区二区在线播放| 国产成人亚洲精品青草天美| 亚洲免费观看| 精品盗摄一区二区三区| 亚洲午夜电影网| 99久久国产综合色|国产精品| 亚洲一区日本| 国产欧美综合色| 久久se精品一区二区| 亚洲激情精品| 日韩欧美二区三区| 日韩国产成人精品| 激情偷拍久久| 欧美大肚乱孕交hd孕妇| 日韩电影在线看| 国内外成人免费视频| 欧美一区二区三级| 天天av天天翘天天综合网| 欧美1级日本1级| 91精品久久久久久久99蜜桃 | 国内精品伊人久久久久av一坑| 亚洲国产精品一区二区第四页av| 8x8x8国产精品| 日本中文字幕一区| 91久久亚洲| 国产区在线观看成人精品| 国产精品一区二区无线| 91国产视频在线观看| 亚洲人成伊人成综合网小说| 成人污污视频在线观看| 欧美日本在线播放| 日韩电影在线免费观看| 欧美亚洲一区| 亚洲精品第1页| 在线视频国内自拍亚洲视频| 亚洲va中文字幕| 国产精品成人一区二区网站软件| 欧美成人aa大片| 国产呦萝稀缺另类资源| 欧洲激情一区二区| 视频一区二区欧美| 老司机一区二区三区| 一区二区三区四区av| 亚洲国产一区二区在线| 国产精品伦一区二区三级视频| 91亚洲国产成人精品一区二区三| 日韩三级在线免费观看| 国产成a人无v码亚洲福利| 欧美精品一二三| 国产精品一区三区| 欧美一级在线观看| 国产成人高清在线| 日韩视频免费观看高清完整版 | 国产一区二区毛片| 欧美一区二区视频网站| 国产精品一卡二| 欧美一区二区日韩一区二区| 国产99久久精品| 欧美成人a视频| 91蝌蚪porny| 成人免费在线播放视频| 亚洲激情精品| 亚洲成人av一区| 色爱区综合激月婷婷| 日本一区中文字幕| 欧美肥胖老妇做爰| 波多野结衣欧美| 国产欧美综合在线| 激情视频一区| 丝袜亚洲另类欧美综合| 欧美色图天堂网| 高清免费成人av| 亚洲国产精品高清| 亚洲永久免费| 国产一区二区三区精品欧美日韩一区二区三区 | 欧美日韩免费一区二区三区视频| 国精产品一区一区三区mba视频 | 日本成人在线视频网站| 91精品国产91热久久久做人人| jvid福利写真一区二区三区| 国产精品视频在线看| 国产精品视频免费观看| 久久aⅴ国产欧美74aaa| 久久综合给合久久狠狠狠97色69| 国产精品chinese| 三级不卡在线观看| 欧美精品第一页| 欧美日韩天堂| 免费av成人在线| 日韩精品综合一本久道在线视频| 国产精品v欧美精品v日韩精品| 亚洲成人一区二区在线观看| 欧美肥妇毛茸茸| 亚洲电影专区| 国产一区二区不卡| 国产精品乱码妇女bbbb| 中文字幕精品在线不卡| 亚洲国产网站| 国产一区 二区| ●精品国产综合乱码久久久久| 一本久久精品一区二区| 91亚洲精品久久久蜜桃| 男人的天堂亚洲一区| 欧美国产一区二区| 欧美一a一片一级一片| 欧美日韩视频| 国产在线精品一区二区三区不卡| 中文字幕在线观看不卡| 欧美精品一级二级三级| 国产欧美亚洲日本| 成人涩涩免费视频| 日韩精品欧美精品| 国产蜜臀av在线一区二区三区| 在线欧美一区二区| 韩国久久久久| 粉嫩高潮美女一区二区三区 | 久久av老司机精品网站导航| 亚洲欧美日韩一区二区三区在线观看 | 久久精品主播| 国产综合精品| 国产宾馆实践打屁股91| 日日噜噜夜夜狠狠视频欧美人| 国产亚洲美州欧州综合国| 欧美日韩大陆在线| 麻豆9191精品国产| 91久久黄色| 91浏览器在线视频| 国产久卡久卡久卡久卡视频精品| 一区二区三区电影在线播| 国产人成亚洲第一网站在线播放| 欧美一区二区三区色| 老牛嫩草一区二区三区日本 | 日韩欧美电影一区| 欧美日韩国产小视频| 免费亚洲婷婷| 在线亚洲精品| 伊人精品视频| 国产精品久久| 欧美少妇一区| 欧美成人免费在线| 不卡av在线网| 成人免费观看av| 国产资源精品在线观看| 蜜桃久久精品一区二区| 日本亚洲一区二区| 午夜视黄欧洲亚洲| 亚洲最新在线观看| 亚洲一区二区在线免费观看视频 | 成人久久18免费网站麻豆 | 国产精品久久国产三级国电话系列| 国产精品草草|