91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫(xiě) Scene Recognition

時(shí)間:2024-01-03  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Coursework 2 (Group) – Scene Recognition
Brief
This is a group coursework: please work in teams of four people.
Due date: Wednesday 10th January, 16:00.
Development data download: training.zip in the coursework (CW) folder
Testing data download: testing.zip in the CW folder
Required files: report.pdf; code.zip; run1.txt; run2.txt; run3.txt
Credit: 25% of overall module mark
Overview
The goal of this project is to introduce you to image recognition. Specifically, we will examine the
task of scene recognition starting with very simple methods -- tiny images and nearest neighbour
classification -- and then move on to techniques that resemble the state-of-the-art.
This coursework will run following the methodology used in many current scientific benchmarking
competitions/evaluations. You will be provided with a set of labelled development images from
which you are allowed to develop and tune your classifiers. You will also be provided with a set of
unlabelled images for which you will be asked to produce predictions of the correct class.
Details
You will need to write software that classifies scenes into one of 15 categories. We want you to
implement three different classifiers as described below. You will then need to run each classifier
against all the test images and provide a prediction of the class for each image.
Data
The training data consists of 100 images for each of the 15 scene classes. These are arranged in
directories named according to the class name. The test data consists of 2985 images. All the
images are provided in JPEG format. All the images are grey-scale, so you don't need to consider
colour.
Objective measure
The key classification performance indicator for this task is average precision; this is literally the
proportion of number of correct classifications to the total number of predictions (i.e. 2985).
Run conditions
As mentioned above, you need to develop and run three different classifiers. We'll refer to the
application of a classifier to the test data as a "run".
Run #1: You should develop a simple k-nearest-neighbour classifier using the "tiny image" feature.
The "tiny image" feature is one of the simplest possible image representations. One simply crops
each image to a square about the centre, and then resizes it to a small, fixed resolution (we
recommend 16x16). The pixel values can be packed into a vector by concatenating each image
row. It tends to work slightly better if the tiny image is made to have zero mean and unit length.
You can choose the optimal k-value for the classifier.
Run #2: You should develop a set of linear classifiers (an ensemble of 15 one-vs-all classifiers)
using a bag-of-visual-words feature based on fixed size densely-sampled pixel patches. We
recommend that you start with 8x8 patches, sampled every 4 pixels in the x and y directions. A
sample of these should be clustered using K-Means to learn a vocabulary (try ~500 clusters to
start). You might want to consider mean-centring and normalising each patch before
clustering/quantisation. Note: we're not asking you to use SIFT features here - just take the pixels
from the patches and flatten them into a vector & then use vector quantisation to map each patch
to a visual word.
Run #3: You should try to develop the best classifiers you can! You can choose whatever feature,
encoding and classifier you like. Potential features: the GIST feature; Dense SIFT; Dense SIFT in a
Gaussian Pyramid; Dense SIFT with spatial pooling (commonly known as PHOW - Pyramid
Histogram of Words), etc. Potential classifiers: Naive bayes; non-linear SVM (perhaps using a linear
classifier with a Homogeneous Kernel Map), ...
Run prediction format
The predictions for each run must be written to a text file named runX.txt (where X is the run
number) with the following format:
For example:
<image_name> <predicted_class>
<image_name> <predicted_class>
<image_name> <predicted_class>
...
0.jpg tallbuilding
1.jpg forest
2.jpg mountain
3.jpg store
4.jpg store
5.jpg bedroom
...
Restrictions
• You are not allowed to use the testing images for anything other than producing the final
predictions They must not be used for either training or learning feature encoding.
The report
The report must be no longer than 4 sides of A4 with the given Latex format for CW2, and must be
submitted electronically as a PDF. The report must include:
• The names and ECS user IDs of the team members
• A description of the implementation of the classifiers for the three runs, including information on
how they were trained and tuned, and the specific parameters used for configuring the feature
extractors and classifiers. We expect that your "run 3" section will be considerably longer than the
descriptions of runs 1 & 2.
• A short statement detailing the individual contributions of the team members to the coursework.
What to hand in
You need to submit to ECS Handin the following items:
• The group report (as a PDF document in the CVPR format same as CW2; max 4 A4 sides, no
appendix)
• Your code enclosed in a zip file (including everything required to build/run your software and to
train and use your classifiers; please don't include binaries or any of the images!)
• The run prediction files for your three runs (named "run1.txt", "run2.txt" and "run3.txt").
• A plain text file listing the user ids (e.g. xx1g20) of the members of your team; one per line.
Marking and feedback
Marks will be awarded for:
• Successful completion of the task.
• Well structured and commented code.
• Evidence of professionalism in implementation and reporting.
• Quality and contents of the report.
• The quality/soundness/complexity of approach used for run 3.
Marks will not be based on the actual performance of your approach (although you can expect to
lose marks if runs 1 and 2 are way off our expectations or you fail to follow the submission
instructions). We will open the performance rankings for run 3. !"#$
Standard ECS late submission penalties apply.
Individual feedback will be given to each team covering the above points. We will also give overall
feedback on the approaches taken in class when we announce the winner!
Useful links
• Matlab
o Image processing toolbox tutorials
o Recommended: VLFeat
§ Example of using VLFeat to perform classification
o Linear and non-linear SVMs
• Python
o numpy, PIL, sklearn (Scikit-learn), OpenCV, etc.
• C and C++
o OpenCV
o Recommended: VLFeat
o Example of using VLFeat to perform classification (Note this code is Matlab, but most of the
functionality is available in the C/C++ API)
• Java
o Recommended: OpenIMAJ
§ Chapter 12 of the tutorial deals with image classification
o BoofCV
Questions
If you have any problems/questions, use the Q&A channel on Teams 

請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:COMP3173 23F&#160;代寫(xiě)、代做 C++設(shè)計(jì)程序
  • 下一篇:代寫(xiě)文華策略 代寫(xiě)開(kāi)拓者量化交易 代編金字塔公式
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    亚洲一区成人在线| 精品久久国产字幕高潮| 欧美一级二级三级蜜桃| 中文字幕免费一区| 日韩电影免费一区| 91亚洲永久精品| 91黄色免费网站| 欧美国产精品劲爆| 久久精品国产第一区二区三区| 国模一区二区三区| 欧美蜜桃一区二区三区| 亚洲免费在线观看视频| 粉嫩一区二区三区在线看| 欧美亚洲一级| 中文乱码免费一区二区| 国产精品一色哟哟哟| 一区二区三区四区五区精品视频| 日韩免费高清电影| 日韩精品亚洲一区二区三区免费| 午夜国产精品视频免费体验区| 色狠狠一区二区| 一区二区三区精品视频在线| aaa欧美色吧激情视频| 91福利国产成人精品照片| 亚洲女与黑人做爰| 欧美1区2区3区| 日韩欧美高清一区| 麻豆免费看一区二区三区| 国产精品一区在线播放| 欧美韩国一区二区| eeuss国产一区二区三区| 欧美日韩一区二区不卡| 五月综合激情婷婷六月色窝| 亚洲视频碰碰| 中文字幕不卡三区| 91美女片黄在线观看| 欧美一个色资源| 韩国女主播成人在线| 色老综合老女人久久久| 午夜视频一区二区三区| 中文日韩在线| 一区二区三区四区乱视频| 欧美三日本三级少妇三99| www亚洲一区| 国产+成+人+亚洲欧洲自线| 51精品秘密在线观看| 免费人成在线不卡| 在线免费不卡电影| 免费不卡在线观看| 欧美无砖砖区免费| 久久aⅴ国产欧美74aaa| 欧洲精品在线观看| 久久国产人妖系列| 欧美日韩免费电影| 国产老妇另类xxxxx| 91精品国产综合久久久蜜臀粉嫩| 老司机精品视频一区二区三区| 在线视频欧美区| 九九久久精品视频| 在线成人免费视频| 高清久久久久久| 2024国产精品| 欧美在线日韩| 中文字幕一区二区三| 亚洲区一区二区三区| 亚洲女人的天堂| 午夜亚洲激情| 蜜桃久久精品一区二区| 911精品国产一区二区在线| 顶级嫩模精品视频在线看| 久久久午夜精品理论片中文字幕| 91亚洲精华国产精华精华液| 国产精品国产a| 国产精品乱子乱xxxx| 日韩高清一区二区| 在线不卡一区二区| 欧美在线网站| 亚洲激情五月婷婷| 欧美在线观看禁18| 成人一级片在线观看| 国产精品乱码人人做人人爱 | 精品国一区二区三区| 91香蕉国产在线观看软件| 亚洲欧洲三级电影| 久久综合狠狠| 成人av网址在线| 《视频一区视频二区| 久久亚洲精品欧美| 懂色av一区二区三区蜜臀| 国产精品美女一区二区三区 | 国产东北露脸精品视频| 中文字幕高清不卡| 一本一道久久a久久精品| 国产成人综合网| 亚洲欧洲国产日本综合| 欧美性猛片xxxx免费看久爱| 成人性视频免费网站| 亚洲人成精品久久久久| 欧美色手机在线观看| 欧美 日韩 国产精品免费观看| 亚洲一区在线观看免费观看电影高清| 欧美网站一区二区| 欧美天堂亚洲电影院在线观看| 婷婷夜色潮精品综合在线| 日韩一区二区三区电影| 日韩一级免费| 成人性生交大片免费看中文| 亚洲免费观看视频| 日韩一卡二卡三卡国产欧美| 一区二区三区国产在线| 国产精品亚洲一区二区三区妖精 | 欧美大度的电影原声| 国产日韩免费| 成人蜜臀av电影| 五月天亚洲婷婷| 久久精品一区八戒影视| 色婷婷av一区二区三区软件| 欧美黄色一区| 国产一区二区在线观看免费| 亚洲色图一区二区| 日韩午夜在线观看视频| 美女日韩在线中文字幕| 91色.com| 国产精品资源在线观看| 亚洲国产精品一区二区久久| 久久午夜国产精品| 欧美精品一二三四| 久久精品人人| 在线欧美三区| 91亚洲资源网| 国产成人在线视频网站| 日韩精品欧美精品| 一区二区在线看| 国产欧美精品在线观看| 日韩亚洲欧美在线观看| 色老汉一区二区三区| 亚洲精品久久久久久一区二区| 成人av综合在线| 久久99国产精品免费| 天天操天天色综合| 一区二区三区中文字幕| 国产精品麻豆一区二区| 久久人人爽爽爽人久久久| 欧美精选午夜久久久乱码6080| 久久久一本精品99久久精品66| 亚洲午夜一级| 欧美日韩一区在线播放| 99天天综合性| 国产**成人网毛片九色| 国内成人自拍视频| 美女视频免费一区| 热久久久久久久| 日韩激情一区二区| 婷婷中文字幕综合| 亚洲成人动漫在线观看| 一区二区三区精密机械公司| 最新中文字幕一区二区三区| 国产精品久久久久久久午夜片| 久久久亚洲精品一区二区三区| 欧美成人精精品一区二区频| 日韩视频123| 日韩欧美一卡二卡| 26uuu欧美日本| 久久免费电影网| 国产午夜精品理论片a级大结局| 精品国产1区二区| 久久综合色8888| 国产亚洲欧美激情| 欧美韩国日本一区| 自拍偷拍欧美激情| 亚洲免费视频成人| 亚洲成在人线免费| 奇米色一区二区| 国产寡妇亲子伦一区二区| 国产乱子伦一区二区三区国色天香 | 亚洲国产一区二区在线| 日韩亚洲在线| 美女国产一区| 欧美日韩免费观看一区二区三区| 欧美精选午夜久久久乱码6080| 日韩一本二本av| 国产亚洲1区2区3区| 日韩理论片一区二区| 亚洲曰韩产成在线| 麻豆免费看一区二区三区| 国产高清在线精品| 午夜日韩视频| 中文高清一区| 欧美日韩亚洲综合| 欧美精品一区二区三区高清aⅴ | 欧美中文字幕一二三区视频| 欧美一区二区三区视频在线| 久久婷婷综合激情| 亚洲视频小说图片| 日本欧美一区二区三区乱码| 国产成人综合视频| 黑人一区二区| 91精品91久久久中77777| 日韩写真欧美这视频| 国产精品久久久久久久久免费樱桃|