91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CSC420編程代寫、c/c++,Java程序代做

時間:2024-01-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Intro to Image Understanding (CSC420)
Assignment 1
Due Date: Jan 26th, 2024, 11:59:00 pm
Total: 120 marks
General Instructions:
• You are allowed to work directly with one other person to discuss the questions. However, you are still expected to write the solutions/code/report in your own words; i.e.
no copying. If you choose to work with someone else, you must indicate this in your
assignment submission. For example, on the first line of your report file (after your
own name and information, and before starting your answer to Q1), you should have
a sentence that says: “In solving the questions in this assignment, I worked together
with my classmate [name & student number]. I confirm that I have written the solutions/code/report in my own words”.
• Your submission should be in the form of an electronic report (PDF), with the answers
to the specific questions (each question separately), and a presentation and discussion
of your results. For this, please submit a file named report.pdf to MarkUs directly.
• Submit documented codes that you have written to generate your results separately.
Please store all of those files in a folder called assignment1, zip the folder and then
submit the file assignment1.zip to MarkUs. You should include a README.txt
file (inside the folder) which details how to run the submitted codes.
• Do not worry if you realize you made a mistake after submitting your zip file; you can
submit multiple times on MarkUs.
Part I: Theoretical Problems (60 marks)
[Question 1] Convolution (10 marks)
[1.a] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
1 −2 ≤ n ≤ 2
0 otherwise
(1)
[1.b] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
2 − |n| −2 ≤ n ≤ 2
0 otherwise
(2)
1
[Question 2] LTI Systems (15 marks)
We define a system as something that takes an input signal, e.g. x(n), and produces an
output signal, e.g. y(n). Linear Time-Invariant (LTI) systems are a class of systems that
are both linear and time-invariant. In linear systems, the output for a linear combination of
inputs is equal to the linear combination of individual responses to those inputs. In other
words, for a system T, signals x1(n) and x2(n), and scalars a1 and a2, system T is linear if
and only if:
T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
Also, a system is time-invariant if a shift in its input merely shifts the output; i.e. If T[x(n)] =
y(n), system T is time-invariant if and only if:
T[x(n − n0)] = y(n − n0)
[2.a] (5 marks) Consider a discrete linear time-invariant system T with discrete input signal
x(n) and impulse response h(n). Recall that the impulse response of a discrete system
is defined as the output of the system when the input is an impulse function δ(n), i.e.
T[δ(n)] = h(n), where:
δ(n) = (
1, if n = 0,
0, else.
Prove that T[x(n)] = h(n) ∗ x(n), where ∗ denotes convolution operation.
Hint: represent signal x(n) as a function of δ(n).
[2.b] (5 marks) Is Gaussian blurring linear? Is it time-invariant? Make sure to include your
justifications.
[2.c] (5 marks) Is time reversal, i.e. T[x(n)] = x(−n), linear? Is it time-invariant? Make
sure to include your justifications.
[Question 3] Polynomial Multiplication and Convolution (15 marks)
Vectors can be used to represent polynomials. For example, 3rd-degree polynomial (a3x
3 +
a2x
2 + a1x + a0) can by represented by vector [a3, a2, a1, a0].
If u and v are vectors of polynomial coefficients, prove that convolving them is equivalent to
multiplying the two polynomials they each represent.
Hint: You need to assume proper zero-padding to support the full-size convolution.
2
[Question 4] Laplacian Operator (20 marks)
The Laplace operator is a second-order differential operator in the “n”-dimensional Euclidean
space, defined as the divergence (∇) of the gradient (∇f). Thus if f is a twice-differentiable
real-valued function, then the Laplacian of f is defined by:
where the latter notations derive from formally writing:
Now, consider a 2D image I(x, y) and its Laplacian, given by ∆I = Ixx+Iyy. Here the second
partial derivatives are taken with respect to the directions of the variables x, y associated
with the image grid for convenience. Show that the Laplacian is in fact rotation invariant.
In other words, show that ∆I = Irr + Ir, where r and r
′ are any two orthogonal directions.
Hint: Start by using polar coordinates to describe a chosen location (x, y). Then use the
chain rule.
Part II: Implementation Tasks (60 marks)
[Question 5] Canny Edge Detector Robustness (10 marks)
Using the sample code provided in Tutorial 2, examine the sensitivity of the Canny edge
detector to Gaussian noise. To do so, take an image of your choice, and add i.i.d Gaussian
noise to each pixel. Analyze the performance of the edge detector as a function of noise variance. Include your observations and three sample outputs (corresponding to low, medium,
and high noise variances) in the report.
[Question 6] Edge Detection (50 marks)
In this question, the goal is to implement a rudimentary edge detection process that uses a
derivative of Gaussian, through a series of steps. For each step (excluding step 1) you are
supposed to test your implementation on the provided image, and also on one image of your
own choice. Include the results in your report.
Step I - Gaussian Blurring (10 marks): Implement a function that returns a 2D Gaussian matrix for input size and scale σ. Please note that you should not use any of the
existing libraries to create the filter, e.g. cv2.getGaussianKernel(). Moreover, visualize this
2D Gaussian matrix for two choices of σ with appropriate filter sizes. For the visualization,
3
you may consider a 2D image with a colormap, or a 3D graph. Make sure to include the
color bar or axis values.
Step II - Gradient Magnitude (10 marks): In the lectures, we discussed how partial
derivatives of an image are computed. We know that the edges in an image are from the
sudden changes of intensity and one way to capture that sudden change is to calculate the
gradient magnitude at each pixel. The edge strength or gradient magnitude is defined as:

where gx and gy are the gradients of image f(x, y) along x and y-axis direction respectively.
Using the Sobel operator, gx and gy can be computed as:
Implement a function that receives an image f(x, y) as input and returns its gradient g(x, y)
magnitude as output using the Sobel operator. You are supposed to implement the convolution required for this task from scratch, without using any existing libraries.
Step III - Threshold Algorithm (20 marks): After finding the image gradient, the
next step is to automatically find a threshold value so that edges can be determined. One
algorithm to automatically determine image-dependent threshold is as follows:
1. Let the initial threshold τ0 be equal to the average intensity of gradient image g(x, y),
as defined below:
where h and w are the height and width of the image under consideration.
2. Set iteration index i = 0, and categorize the pixels into two classes, where the lower
class consists of the pixels whose gradient magnitudes are less than τ0, and the upper
class contains the rest of the pixels.
3. Compute the average gradient magnitudes mL and mH of lower and upper classes,
respectively.
4. Set iteration i = i + 1 and update threshold value as:
τi =
mL + mH
2
5. Repeat steps 2 to 4 until |τi − τi−1| ≤ ϵ is satisfied, where ϵ → 0; take τi as final
threshold and denote it by τ .
4
Once the final threshold is obtained, each pixel of gradient image g(x, y) is compared
with τ . The pixels with a gradient higher than τ are considered as edge point and
is represented as white pixel; otherwise, it is designated as black. The edge-mapped
image E(x, y), thus obtained is:
E(x, y) = (
255, if g(x, y) ≥ τ
0, otherwise
Implement the aforementioned threshold algorithm. The input to this algorithm is the gradient image g(x, y) obtained from step II, and the output is a black and white edge-mapped
image E(x, y).
Step IV - Test (10 marks): Use the image provided along with this assignment, and also
one image of your choice to test all the previous steps (I to III) and to visualize your results
in the report. Convert the images to grayscale first. Please note that the input to each step
is the output of the previous step. In a brief paragraph, discuss how the algorithm works for
these two examples and highlight its strengths and/or its weaknesses.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:莆田純原鞋的3個常見進貨渠道-在哪買?多少錢STM潮鞋服終端供應鏈
  • 下一篇:代寫IRP 1 Coursework 01編程、代做Python程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    色婷婷久久99综合精品jk白丝| 国产aⅴ综合色| 精品一区二区三区免费播放| 99re这里只有精品视频首页| 国产美女一区| 欧美成人午夜电影| 亚洲一区二区av在线| 高清不卡在线观看av| 国产欧美一区二区三区国产幕精品| 欧美精品三级在线观看| 最新成人av在线| 国产成人h网站| 午夜在线一区| 国产欧美精品一区二区三区四区| 日韩激情av在线| 亚洲一级一区| 日韩欧美你懂的| 免费观看在线色综合| 欧美精品尤物在线| 在线播放中文字幕一区| 亚洲一区二区精品视频| 午夜精品电影| 91精品国产色综合久久ai换脸| 亚洲精品欧美专区| 欧美成人精品| 91精品国产综合久久婷婷香蕉| 亚洲在线观看免费视频| 女女同性女同一区二区三区91| 老司机精品导航| 一片黄亚洲嫩模| 欧美人成在线| 久久亚洲综合av| 国产精品白丝jk黑袜喷水| 久久一区免费| 亚洲综合视频在线观看| 欧美日韩日本网| 亚洲精品一区二区精华| 国产精品99久久久久久有的能看| 91豆麻精品91久久久久久| 一二三区精品视频| 在线观看视频免费一区二区三区| 欧美岛国在线观看| 国产一本一道久久香蕉| 日本高清不卡一区| 日韩高清一级片| 欧美一级久久| 午夜精品成人在线视频| 亚洲一区二区三区免费观看| 亚洲女同一区二区| 1024精品一区二区三区| 18涩涩午夜精品.www| 欧美激情四色| 国产午夜一区二区三区| 91污在线观看| 欧美激情在线看| 欧美成人亚洲| 国产精品久久三区| 永久久久久久| 亚洲美女视频在线观看| 一区二区三区四区国产| 亚洲制服欧美中文字幕中文字幕| 亚洲激情一区二区| 亚洲精品国产a久久久久久| 一区二区不卡在线视频 午夜欧美不卡'| a级精品国产片在线观看| 91精品欧美久久久久久动漫 | 欧美精品乱码久久久久久按摩 | 久久久三级国产网站| 欧美一区二区三区久久精品| 久久九九全国免费| 国产精品国产三级欧美二区| 国产精品美女一区二区在线观看| 激情欧美一区二区三区| 夜夜亚洲天天久久| 玖玖玖国产精品| 国产伦精品一区二区三区免费迷| 欧美一级xxx| 欧美激情四色| 亚洲免费av在线| 老司机午夜精品视频| 久久99精品视频| 欧美mv和日韩mv国产网站| 99国产精品久久久久久久久久| 中文子幕无线码一区tr| 国产精品日韩二区| 久久99这里只有精品| 69av一区二区三区| 91麻豆成人久久精品二区三区| 一区精品在线播放| 久久综合九色综合网站| 国产毛片精品一区| 国产精品你懂的在线| 性xx色xx综合久久久xx| 国产一区二区三区蝌蚪| 久久久国产午夜精品| 一区二区91| 国产一二精品视频| 国产精品久久久久久久久免费丝袜| 一区二区三区高清视频在线观看| 日韩高清一区在线| 久久久久久久电影| 久久精品国产99精品国产亚洲性色| 国产精品一二三四区| 国产精品国产三级国产aⅴ无密码| 一本久久综合亚洲鲁鲁五月天 | 亚洲午夜激情网站| 欧美成人在线直播| 国产精品手机在线| 大桥未久av一区二区三区中文| 亚洲日本韩国一区| 69堂成人精品免费视频| 亚洲动漫精品| 国产一区二区三区在线观看精品| 国产精品久久久久桃色tv| 欧美亚洲综合一区| 樱桃成人精品视频在线播放| 精品在线一区二区| 亚洲欧美日韩人成在线播放| 欧美巨大另类极品videosbest | av电影在线观看一区| 婷婷成人综合网| 久久精品亚洲国产奇米99| 91传媒视频在线播放| 国户精品久久久久久久久久久不卡| 日本vs亚洲vs韩国一区三区二区 | 在线精品视频小说1| 在线观看成人一级片| 国产成人av一区二区三区在线观看| 亚洲美女少妇撒尿| 久久综合九色综合97_久久久| 色屁屁一区二区| 在线免费观看欧美| av不卡一区二区三区| 久久99精品一区二区三区| 亚洲永久精品国产| 亚洲国产精品国自产拍av| 欧美精品在线一区二区三区| 午夜在线视频一区二区区别| 欧美日韩国产不卡在线看| 国产成人精品aa毛片| 美女mm1313爽爽久久久蜜臀| 亚洲欧美一区二区久久| 久久综合色播五月| 91精品久久久久久久99蜜桃| 色偷偷久久一区二区三区| 亚洲日韩视频| 国产精品swag| 色综合色狠狠天天综合色| 粉嫩蜜臀av国产精品网站| 狠狠色丁香久久婷婷综合丁香| 亚洲成人免费视| 亚洲一区二区av在线| 亚洲视频每日更新| 国产精品久久久久天堂| 国产日韩精品一区二区三区| 精品国产a毛片| 精品国产一区二区三区av性色| 欧美午夜精品久久久久久孕妇| 久久免费国产| 色婷婷综合久色| 91黄色免费版| 一本到三区不卡视频| 久久青青草原一区二区| 久久精品91| 色94色欧美sute亚洲线路一ni| 欧美亚洲视频| 色哟哟国产精品| 欧美午夜片在线看| 欧美欧美欧美欧美| 日韩一二三区不卡| 欧美成人午夜电影| ww久久中文字幕| 精品国产乱码久久久久久蜜臀| 日韩视频在线你懂得| 精品国精品国产| 久久久国产精品午夜一区ai换脸| 久久影视一区二区| 国产欧美一区二区精品性色| 欧美经典一区二区| 亚洲人成精品久久久久| 亚洲一区日韩精品中文字幕| 亚洲制服欧美中文字幕中文字幕| 亚洲午夜久久久久久久久电影网 | 精品国产乱码久久久久久浪潮| 久久蜜桃av一区精品变态类天堂 | |精品福利一区二区三区| 久久精品男女| 亚洲欧美久久久| 亚洲乱码久久| 伊人色综合久久天天五月婷| 欧美一区久久| 欧美国产高潮xxxx1819| 99久久精品免费看国产免费软件| 亚洲国产精品v| 亚洲色图色小说| 日韩电影免费一区| 成人免费视频视频| 影音欧美亚洲| 欧美中文字幕一二三区视频| 欧美电影免费观看高清完整版在线|