91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做ECN6540、代寫Java,c++編程語言

時間:2024-01-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECN6540  ECN6540 1

Data Provided:

Mathematical, Statistical and Financial Tables for the Social Sciences (Kmietowicz
and Yannoulis).


DEPARTMENT OF ECONOMICS Autumn Semester 2022/23

ECN6540 Econometric Methods

Duration: 2? Hours

Maximum 1500 words excluding equations


The answers to the questions must be type-written. The preference is that
symbols and equations should be inserted into the document using the
equation editor in Word. Alternatively, they can be scanned and inserted as an
image (providing it is clear and readable).


There are two questions, firstly on microeconometrics and secondly on
macroeconometrics. ANSWER ALL QUESTIONS. The marks shown within each
question indicate the weighting given to component sections. Any calculations
must show all workings otherwise full marks will not be awarded.

ECN654540 2
MICROECONOMETRICS

1. The non-mortgage debt behaviour of individuals is modelled using UK
cross sectional data for 2017 from Understanding Society based upon
11,**0 employees. The table below describes the variables in the data.


Variable Definitions
-----------------------------------------------------------------------------------------------------
debtor = 1 if has any non-mortgage debt, 0 otherwise
debt_inc = debt to income ratio (outstanding debt ? annual income)
work_fin = 1 if employed in financial sector, 0 otherwise
lincome = natural logarithm of income last month
ghealth = 1 if currently in good or excellent health, 0 otherwise
sex = 1 if male, 0=female
degree = 1 if university degree, 0 = below degree level education
lsavinv_inc = natural logarithm of saving & investment annual income
age = age of individual in years
agesq = age squared
-----------------------------------------------------------------------------------------------------
a. The following Stata output shows an analysis of modelling the probability that
an individual holds non-mortgage debt using a Logit regression.

logit debtor ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Logistic regression Number of obs = 11,**0
LR chi2(8) = 546.50
Prob > chi2 = 0.0000
Log likelihood = -7067.5606 Pseudo R2 = 0.0372

----------------------------------------------------------------------------------
debtor | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------+--------------------------------------------------------------
1.work_fin | 5.43774 1.271821 4.28 0.000 2.945017 7.930462
lincome | .4584589 .0384631 11.92 0.000 .3830726 .5****51
|
work_fin#c.lincome |
1 | -.6710698 .1587**2 -4.23 0.000 -.9821792 -.****604
|
ghealth | -.0796141 .0413548 -1.93 0.054 -.160668 .0014398
sex | -.0084802 .0433091 -0.20 0.845 -.0933645 .0764041
degree | .0795525 .0462392 1.72 0.085 -.0110748 .1701797
age | -.03164** .0020753 -15.25 0.000 -.0357106 -.0275757
lsavinv_inc | -.081**22 .00***26 -9.61 0.000 -.0986062 -.0651983
_cons | -2.638081 .2870575 -9.19 0.000 -3.200703 -2.075458
----------------------------------------------------------------------------------

ib(0).work_fin##c.lincome is an interaction effect between a binary
and continuous variable. Summary statistics on variables used in the analysis
are provided below.

sum ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
1.work_fin | 11,767 .0398572 .1956** 0 11
lincome | 11,767 7.650333 .6965933 .0**777 9.8**781

work_fin#|
c.lincome 1 | 11,767 .3197615 1.574*** 0 9.72120
ECN6540
ECN6540 3
ghealth | 11,767 .5457636 .4979224 0 1
sex | 11,767 .4812612 .49967 0 1
degree | 11,767 .3192827 .4662186 0 1
age | 11,767 44.43885 10.39257 18 65
lsavinv_inc | 11,767 1.85**15 2.600682 0 11.51294
-------------+---------------------------------------------------------

i) What do the coefficients of work_fin, lincome and the interaction
term imply? Explain whether the estimates can be interpreted.
ii) Showing your calculations in full, find the marginal effects evaluated
at the mean from the above output.
iii) Provide an economic interpretation of the marginal effects found in
(a(ii)).
iv) Given the pseudo R-squared what is the value of the constrained
log likelihood function? Show your calculation.

[10 marks]

[25 marks]

[10 marks]

[5 marks]
b. There is also information on the amount of debt held as a proportion of
income. This outcome is modelled using the Heckman sample selection
estimator. The Stata output is shown below.

heckman debt_inc age agesq sex degree lsavinv_inc,
select(debtor = ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc)

Heckman selection model Number of obs = 11,**0
Wald chi2(5) = 249.22
Log likelihood = -13437.59 Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-----------------------+------------------------------------------------------------
debt_inc |
age | -.1341**4 .0629505 -2.13 0.033 -.2575282 -.0107667
agesq | .0003505 .0001265 2.77 0.006 .0001026 .0005985
sex | .1517503 .0607726 2.50 0.013 .0**6382 .2708623
degree | .157981 .0661602 2.39 0.017 .0283095 .2876525
lsavinv_inc | .1130368 .0124696 9.06 0.000 .0885968 .137**67
_cons | 9.727016 .2615992 37.18 0.000 9.214291 10.23974
-----------------------+------------------------------------------------------------
debtor |
1.work_fin | 1.130109 .3719515 3.04 0.002 .4010974 1.85912
lincome | .2965059 .011**74 26.18 0.000 .2743045 .3187072
|
work_fin#c.lincome |
1 | -.1360006 .0461592 -2.95 0.003 -.226**09 -.0455303
|
ghealth | -.0106065 .0106393 -1.00 0.319 -.0314592 .0102462
sex | -.0488**4 .0236997 -2.06 0.039 -.095**4 -.0024229
degree | -.0369117 .0256652 -1.44 0.150 -.0872146 .01**2
age | -.016944 .0011782 -14.38 0.000 -.01925** -.0146349
lsavinv_inc | -.0468348 .00**518 -9.86 0.000 -.0561482 -.**214
_cons | -1.828795 .0961843 -19.01 0.000 -2.01**12 -1.640277
-------------------+----------------------------------------------------------------
lambda | -2.579767 .0**69 -2.656537 -2.502997
--------------------------------------------------------------------------------

i) Interpret the estimates in the outcome equation.
ii) In the context of the above Stata output what does the estimate of
the inverse Mills ratio (lambda) suggest? What does lambda
provide an estimate of in terms of the theory?
[5 marks]


[15 marks]
ECN6540
ECN6540 4



c.
iii) What assumption has been made about the covariates
work_fin, lincome and ghealth in the treatment equation?
What are the implications if these assumptions are not met? Are
they individually statistically significant? If these variables are also
included in the outcome equation explain whether the model is
identified or not.

In the context of the above application the following figure shows the
distribution of debt as a proportion of annual income.

Describe a situation in which a Tobit specification would be the preferred
modelling choice rather than a sample selection approach. What
assumptions would the Tobit modelling approach have to make with
regard to the   treatment   and   outcome   equations?


ECN6540
ECN6540 5
MACROECONOMETRICS


2. a.

The following Stata output is based upon modelling aggregate
savings as a function of Gross Domestic Product (GDP), both
measured in constant prices, over time () using data for the U.S.
over the period 1960 to 2020. The savings function is a double
logarithmic specification as follows:
log = 0 + 1log +
Where log is the natural logarithm of savings and log is the
natural logarithm of GDP. The Stata output also shows the results
of ADF tests for savings and GDP. Note that in the output L
denotes a lag and D a difference.


regress logS logY

Source | SS df MS Number of obs = 61
-------------+------------------------------ F( 1, 59) = 180.39
Model | 29.3601715 1 29.3601715 Prob > F = 0.0000
Residual | 9.6029125 59 .**761229 R-squared = 0.7535
-------------+------------------------------ Adj R-squared = 0.7494
Total | 38.963084 60 .649384**4 Root MSE = .40344
------------------------------------------------------------------------------
logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY | 1.16096 .0864398 13.43 0.000 .9879948 1.333926
_cons | -4.00**35 .6**211 -5.84 0.000 -5.38026 -2.63441
------------------------------------------------------------------------------

Durbin-Watson d-statistic( 2, 61) = .7252386
predict e, resid

i) Interpret the OLS results. Explain whether the analysis is likely
to be spurious?
ii) What do the results of the ADF tests on savings and GDP imply
at the 5 percent level? Show the test statistic used, the null
hypothesis tested and the appropriate critical value.
iii) Explain whether savings and GDP are cointegrated at the 5
percent level. Explicitly state the null hypothesis, show
algebraically the estimated test equation based upon the
output, and provide the appropriate critical value.

dfuller logS, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logS |
L1. | -.1****5 .0534553 -2.43 0.019 -.2372431 -.0225069
LD. | .****003 .099153 2.35 0.022 .0343457 .4**6549
L2D. | .193**** .0807975 2.40 0.020 .0316167 .3561897
L3D. | -.0***07 .0858594 -0.97 0.336 -.2558545 .08**53
L4D. | -.2258198 .0784568 -2.88 0.006 -.3***49 -.0682348
cons | .7246592 .2840536 2.55 0.014 .1541207 1.295198
------------------------------------------------------------------------------

ECN6540
ECN654**
dfuller logY, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY |
L1. | -.0175**9 .0092468 -1.** 0.063 -.0361467 .000999
LD. | .4530274 .12**37**.51 0.001 .1938**6 .7122072
L2D. | -.0699222 .1306402 -0.54 0.595 -.3****08 .192**65
L3D. | -.1351664 .1297451 -1.04 0.303 -.3957672 .1254344
L4D. | -.17749** .1177561 -1.51 0.138 -.4140149 .05**255
_cons | .1720878 .076104 2.26 0.028 .0192285 .**49**1
------------------------------------------------------------------------------

dfuller e, lag(4)

Test Statistic
----------------------------
Z(t) -4.042
----------------------------

b. Explain why the Johansen approach to cointegration may be
preferable to the Engle-Granger two step approach, in each of the
following two scenarios:
i) In the above example (part a) when there are variables in the
model, i.e. = 2?
ii) When ?3. In this scenario what is the maximum number of
cointegrating vectors?

c. A researcher has modelled the relationship between personal
consumption expenditure and the money supply as measured by
M2 based upon a double logarithmic specification as follows:
log() = 0 + 1log(2) +
They then build a dynamic forecast of consumption. Two
alternative models are estimated over the period 1969q1 through
to 2008q4: Model 1 an ARIMA(1,1,2) and Model 2 an
ARIMA(1,1,1). Then the researcher forecasts out of sample
through to 2010q3. The results are shown below along with
diagnostic statistics.

i) Based upon the output below for the ARIMA(1,1,1) model draw
both the ACF and PACF for the AR and MA components.
ii) Explain whether the models are stationary and invertible, along
with any potential implications.
iii) Explain in detail which of the above two models is preferred
and why. Outline any further analysis you may want to
undertake giving your reasons.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:天然鉆石和人工培育鉆石的區別:看看十個主要的區別方法
  • 下一篇:代投代發EI 檢索 EI會議
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    91精品国产91久久久久久一区二区 | 激情综合亚洲精品| 懂色av一区二区夜夜嗨| 亚洲国产婷婷| 欧美一区二区三区日韩视频| 国产精品伦理一区二区| 久久电影网电视剧免费观看| 欧美日本久久| 欧美视频自拍偷拍| 国产精品国产三级国产aⅴ原创| 日韩精品五月天| 色综合色狠狠综合色| 在线观看一区不卡| 国产精品欧美经典| 国产综合久久久久久鬼色| 亚洲精品一区二区三| 日韩欧美久久一区| 午夜不卡在线视频| 黄色国产精品| 精品精品欲导航| 日韩电影在线观看电影| 一区在线电影| 日韩精品专区在线影院观看| 婷婷国产v国产偷v亚洲高清| 狠狠综合久久| 久久亚洲捆绑美女| 麻豆91精品91久久久的内涵| 最近看过的日韩成人| www亚洲一区| 精品一区二区三区香蕉蜜桃 | 日本aⅴ亚洲精品中文乱码| 国内揄拍国内精品久久| 精品成人免费观看| 国产精品一区在线观看乱码 | 懂色av一区二区三区免费看| 色先锋久久av资源部| 亚洲男帅同性gay1069| 欧美国产专区| 337p日本欧洲亚洲大胆色噜噜| 久久99久久99精品免视看婷婷| 国产嫩草一区二区三区在线观看 | 久久国产欧美| 亚洲午夜精品网| 亚洲精品欧洲精品| 国产精品色在线观看| 99在线精品免费| 91精品一区二区三区久久久久久| 亚洲成人tv网| 国产精品亚洲产品| 亚洲日本在线天堂| 亚洲福利免费| 综合久久一区二区三区| 在线观看欧美亚洲| 国产精品久久久久久久岛一牛影视| 色综合中文字幕国产 | 亚洲综合精品| 亚洲国产一区二区三区青草影视| 亚洲韩日在线| 一片黄亚洲嫩模| 亚洲欧美春色| 日韩激情视频在线观看| 色中色一区二区| 美女任你摸久久| 欧美日韩高清一区二区| 国产呦精品一区二区三区网站| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 日韩精品每日更新| 欧美艳星brazzers| 国产麻豆精品视频| 日韩精品一区二区三区三区免费| 国产成人免费视频网站高清观看视频| 日韩一区二区三区高清免费看看| 国产黑丝在线一区二区三区| 精品伦理精品一区| 欧美日韩免费观看一区| 伊人色综合久久天天| 久久精品中文字幕一区二区三区| 日产欧产美韩系列久久99| 欧美日韩在线观看一区二区 | 在线观看日韩av电影| 播五月开心婷婷综合| 2019国产精品| 狠狠色丁香久久综合频道| 一区二区三区中文字幕电影| 久久精品主播| 国产成人鲁色资源国产91色综| 2020国产精品| 制服诱惑一区二区| 久久se精品一区二区| 26uuu亚洲| 亚洲人成免费| 裸体一区二区三区| 久久综合九色综合97_久久久| 国产精品高清一区二区三区| 性欧美疯狂xxxxbbbb| 3d动漫精品啪啪一区二区竹菊| 91免费国产在线观看| 一区二区三区国产豹纹内裤在线| 欧美日韩亚洲高清一区二区| 99精品久久只有精品| 亚洲一区二区三区三| 4438x亚洲最大成人网| 狠狠干成人综合网| 麻豆精品视频在线观看视频| 欧美一区二区三区免费看| 国产91在线观看| 国产成人精品三级| 中文在线免费一区三区高中清不卡 | 国产成人免费视| 亚洲女女做受ⅹxx高潮| 91成人看片片| 欧美婷婷久久| 国产精品亚洲综合一区在线观看| 中文字幕一区二区在线观看| 欧美日韩在线免费视频| 精品1区2区3区4区| 国产一区二区三区久久久| 中文字幕日韩一区| 欧美高清性hdvideosex| 99视频一区| 99精品欧美一区二区三区小说 | 日韩精品资源二区在线| 久久福利一区| 97精品久久久久中文字幕| 中文精品在线| 亚洲最黄网站| 国产精品久久久久精k8 | 中文字幕av一区二区三区免费看| 亚洲女同在线| 国产自产精品| 成人国产精品视频| 日本不卡中文字幕| 自拍偷拍亚洲综合| 精品免费一区二区三区| 欧美亚洲国产一区二区三区va | 捆绑紧缚一区二区三区视频| 亚洲日本va在线观看| 精品对白一区国产伦| 欧美午夜精品久久久久久孕妇| 亚洲大胆av| 欧美fxxxxxx另类| 处破女av一区二区| 久久99精品视频| 精品福利在线导航| 欧美国产精品专区| 狂野欧美性猛交blacked| 欧美丰满一区二区免费视频 | 日韩码欧中文字| 久久免费看少妇高潮| 在线不卡a资源高清| 色婷婷综合激情| 亚洲欧美卡通另类91av | 蜜桃久久精品一区二区| 亚洲图片一区二区| 亚洲激情图片一区| 18欧美乱大交hd1984| 日本一区二区三区高清不卡| 精品久久久久久久久久久院品网| 91精品国产麻豆国产自产在线| 欧美特级限制片免费在线观看| 久久婷婷麻豆| 久久一区激情| 美女尤物久久精品| 久久av一区二区三区| 亚洲欧美日韩在线综合| 亚洲一区视频| 蜜臀av一区二区在线观看 | 亚洲欧美另类久久久精品2019| 久久婷婷影院| 久久久国产精品一区二区三区| 日韩视频中文| 国产日韩欧美在线播放不卡| 国产亚洲精品bv在线观看| 99pao成人国产永久免费视频| 在线电影一区| 国产精品日韩二区| 久久精品国产99精品国产亚洲性色| 国产精品一级| 一本色道久久综合亚洲91| 欧美怡红院视频| 91麻豆精品国产91久久久久久| 91精品国产乱码久久蜜臀| 日韩精品专区在线影院重磅| 久久综合色综合88| 国产精品萝li| 亚洲高清免费观看高清完整版在线观看| 亚洲一区欧美一区| 免费观看成人av| 国模套图日韩精品一区二区| 成人性生交大片| 欧美va天堂| 亚洲永久在线| 欧美日韩国产免费| 精品三级在线看| 国产欧美视频在线观看| 国产成人午夜精品5599| 天天综合色天天| 亚洲自拍另类综合| 另类小说图片综合网| 波多野结衣亚洲|