91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CS 476/676 程序

時間:2024-02-14  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


Winter 2024 CS **6/676

Assignment 1

Due Feb-11, 11:59pm, via Crowdmark.

1. [8] Consider a **period binomial model with T = 1 and assume the risk free interest rate r = 0. That is, the stock (currently priced at S0 = 10) can got up to STu = uS0 with probability pu or down to STd = dS0 with probability 1−pu where pu ∈ (0,1). We know that d < 1 < u, but we do not know u or d. Suppose the following two options are traded in the market, both with maturity T = 1:

• European Put with strike K = 9 and current price P (1) = 1, 10

• European Put with strike K = 8 and P (2) = 1/3. 20

Assume the market is arbitrage free.

(a) [3] What is the fair value of a European call option with a strike price of K3 = 7?

(b) [2]Let δ0 be the number of stocks and η0 the number of bonds (noting B0 = BT = 1) you hold at t = 0. Find δ0 and η0 so that your strategy exactly replicates the payout of a short position in this call.

(c) [3] Using the actual probability pu, what is the expected option payoff for the European call in (a)? What is wrong with pricing this call option at this expected payoff value? If this European call option is priced at the expected payoff using p which is different from the fair value computed in (a), how can you construct an arbitrage?

2. [4] Consider the N-period binomial lattice. Denote by Snj for 0 ≤ n ≤ N and 0 ≤ j ≤ n be the price of the underlying at time tn and state j (i.e., j ups). A European Straddle Option has payoff at time T

max{K −SN,0}+max{SN −K,0}.

Denote by V (Snj , K, tn) be the fair value of the straddle option at time tn in state j. Use induction (over n)

to show that for any constant λ > 0,

V(λSnj,λK,tn)=λV(Snj,K,tn), n=0,1...,N,j=0,1,...,n.

3. [8] Consider the N-period binomial lattice where, at time t , the stock price Sj can go up to Sj+1 = uSj n n n+1n

with probability pu and sown to Sj n+1

interest rate and denote by

= dSj with probability 1 − pu. Denote by r > 0 the constant risk free n

qu = er∆t − d u−d

the risk neutral probability.

(a) [3] Provide an expression for all possible stock prices at T = ∆t · N .

(b) [2] If S0 is given, what is the risk neutral probability that, at time T, the stock price has experienced exactly k up moves?

(c) [3] Using risk neutral pricing, provide the expression, in terms of T, qu, K, r for the fair time t = 0 value of a European straddle expiry T and strike price K. Recall from Question 3 that such an option has payout max{K − SN , 0} + max{SN − K, 0}. Justify your answer.

4. [8] In this exercise, we consider the problem of pricing a Parisian Up-and-In Call. Let (St)t≥0 be a geometric Brownian Motion with drift r being equal to the risk-free interest rate and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). Let K > 0 be the strike price and L > 0 be a barrier. A Parisian Up-and-In Call (PUIC) option is activated if the stock price process (St)t∈[0,T] exceeds L consecutively for a period of time at least D > 0. Hence, the payout of a PUIC option at time T is max {0, (ST − K ) · A}, where

(1, if (St)t∈[0,T] had a consecutive excursion above L that lasted at least D, A=.

0, otherwise.

Today’s price is the discounted expected payoff; hence, we are estimating μ = E ?e−rT max {(ST − K) · A, 0}? .

For simplicity, we assume throughout the remainder of this question that 0 < D < T, K,L > S0. 1

 

(a) [4] Give an algorithm, in pseudo-code, that computes a Monte Carlo estimator for μ based on n simu- lations.

(b) [4] Implement your algorithm from a). Let N = 250, r = 0.05, σ = 0.25, D = 0.1, T = 1, S0 = 100 and i)K=110,L=120andii)K=120,L=110. Foreachofi)andii),reportaMCestimateforμalong with a 95% confidence interval based on n = 100, 000 independent simulations.

Note. In order to count how long the stock price was above L, use the following:

• IfStk ≥LandStk+1 ≥L,addtk+1−tk totheclock.

• If Stk < L and Stk+1 < L, there is no excursion.

• If Stk < L and Stk+1 ≥ L, an excursion started between tk and tk+1; add 0.5(tk+1 − tk) to the clock. • If Stk ≥ L and Stk+1 < L, an excursion ended between tk and tk+1; add 0.5(tk+1 − tk) to the clock.

5. [22] Consider the Black Scholes model, that is, let (St)t∈[0,T] be a geometric Brownian Motion with drift r and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). An Asian Option with maturity T and strike price K has

payout at time T given by max n0, 1 R T St dt − K o . Given time steps 0 ≤ t1 < · · · < tN = T for some N , we T0

consider the discretized Asian option with payout max n0, N1 PNj=1 Stj − Ko . Today’s price for this option

?−rT n 1PN o? is the discounted expected payoff. As such, we are estimating μ = E e max 0, N j=1 Stj − K

the remainder of this question, assume the time steps are given by tk = Nk T for k = 1,...,N. (a) [1] Explain why this option is a path dependent option.

. For

(b) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using (naive) Monte Carlo.

(c) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using antithetic variates.

(d) [2] There is no known analytical formula for μ. The reason is that the distribution of the sum of log-

normals is not known. However, if we replace the arithmetic average N1 PNj=1 Stj by the geometric

?−rT ? ?QN ?1/N ?? average, i.e., if we consider μg = E e max 0, j =1 S (tj ) − K

instead, the problem sim- plifies as the distribution of the product of log-normals is again log-normal. One can show (you don’t

need to) that μg = e−rT ?ea+b/2Φ(d1) − KΦ(d2)?, where a=log(S0)+(r−σ2/2)T(N+1)/(2N), b=σ2T(N+1)(2N+1),

√ √ 6N2 d1 =(−log(K)+a+b)/ b, d2 =d1 − b.

Explain why using the Asian Option with geometric averaging can be used as a control variable to price the Asian Option with arithmetic averaging.

(e) [3] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using the geometric Asian Option as a control variable. Estimate the internal β using a pilot run.

(f) [4] Implement your algorithms from b), c) and e) and call your functions with S0 = 100, K = 110, r = 0.01, σ = 0.1, T = 1, N = 260 and n = 105 and npil = 100. You should report 3 confidence intervals, one for each algorithm. Comment on your output.

Finally, suppose instead of the continuous time Black Scholes model, we assume an N-period binomial model √

with u = eσ

(g) [3] Write down an algorithm, in pseudo-code, to find the fair value V0 of an Asian Call Option.

T/N, d = 1/u and qu = 1/2 (and the same σ,r,S0,K,T as before).

(h) [3] Implement your algorithm and, for each N ∈ {5, 10, 20} report the output for S0 = 100, K = 110,

r=0.01,σ=0.1(justlikebefore),u=eσ T/N,d=1/u.

(i) [2] Discuss advantages and shortcomings of the MC method versus the approximation through the binomial model.

2

 

6. [5] Graduate Students Only. Consider the N-period binomial model, but assume that at each time n ≥ 1, the up factor un = un(ω1,...,ωn) and down factor dn = dn(ω1,...,ωn) and the risk free interest rate rn = rn(ω1,...,ωn) are allowed to depend on n and the first n outcomes ω1,...,ωn ∈ {up,down}. The initial values u0,d0,r0 at time 0 are given. The stock price at time 1 is

and, for n ≥ 1, the stock price at time n + 1 is (un(ω1,...,ωn)Sn(ω1,...,ωn),

(uS0, if ω1 = up, S1(ω1) = dS0, if ω2 = down.

if ωn+1 = up,

if ωn+1 = down. .

One dollar invested or borrowed from the bank account at time 0 grows to an investment or debt of er0∆t at time 1; for n ≥ 1, one dollar invested or borrowed at time n grows to an investment or debt of ern(ω1,...,ωn)∆t at time n + 1. We assume that the no-arbitrage condition

0 < dn(ω1,...,ωn) < exp{rn(ω1,...,ωn)∆t} < un(ω1,...,ωn)

for n ∈ N and ω1,...,ωn ∈ {up,down}. Similarly, assume that at time t = 0, 0 < d0 < er0∆t < u0.

Consider a derivative which, after N periods, pays off the random amount VN (ω1, . . . , ωN ).

(a) In the model just described, provide an algorithm for determining the price at time zero for the derivative.

(b) Construct a replicating portfolio in this general model. That is, provide a formulas for δn and ηn, n = 0, 1, . . . , so that if we hold δn stocks and ηn bonds, then this portfolio replicated the derivate payout VN at time N.

Sn+1(ω1,...,ωn,ωn+1) = dn(ω1,...,ωn)Sn(ω1,...,ωn),

如有需要,請加QQ:99515681 或WX:codehelp

 

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代寫EMS5730、代做Python設(shè)計程序
  • 下一篇:代寫CS9053、代做Java語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    99精品视频免费观看| 亚洲电影一级片| 亚洲欧洲精品一区二区三区 | 国产精品二区影院| 久久国产手机看片| 日韩三级伦理片妻子的秘密按摩| 国产精品国产自产拍高清av王其 | 欧美一区二区三区四区视频| 日韩毛片一二三区| 国产在线精品视频| 99精品视频免费| 日韩一二三区不卡| 亚洲一区二区偷拍精品| 精品1区2区| 9191久久久久久久久久久| 一区视频在线播放| 国产福利精品导航| 欧美一级一区| 中国av一区二区三区| 久久69国产一区二区蜜臀| 亚洲精品乱码视频| 精品毛片乱码1区2区3区| 亚洲va天堂va国产va久| 91香蕉视频在线| 欧美视频日韩视频| 尤物在线观看一区| 欧美一区二区视频在线| 7777精品伊人久久久大香线蕉的| 一区二区三区在线观看动漫| 99久久精品情趣| 欧美日韩一区在线观看| 依依成人精品视频| 韩日欧美一区| www日韩大片| 韩国成人在线视频| 久久午夜视频| 亚洲一区在线观看视频| 欧美承认网站| 精品av久久707| 国产主播一区二区三区| 91久久精品一区二区三区| 亚洲啪啪综合av一区二区三区| 成人ar影院免费观看视频| 欧美日韩精品高清| 免费成人av在线| 亚洲欧美日本视频在线观看| 国产精品电影一区二区三区| 成人精品在线视频观看| 91精品免费在线观看| 美日韩一级片在线观看| 色综合久久九月婷婷色综合| 一区二区三区电影在线播| 伊甸园精品99久久久久久| 中文字幕av一区二区三区高| 91猫先生在线| 久久久综合精品| 处破女av一区二区| 日韩久久久久久| 成人丝袜视频网| 日韩欧美一区二区免费| 成人三级在线视频| 精品国产91乱码一区二区三区 | 国产丝袜欧美中文另类| 色综合天天在线| 欧美激情中文字幕| 欧美日本精品| 亚洲视频一区在线观看| 一区在线播放| 一区二区三区影院| 美女日韩在线中文字幕| 日本欧美在线看| 欧美日韩国产高清一区二区三区 | 一区二区久久久久| 亚洲欧美日韩专区| 免费一级片91| 3d成人h动漫网站入口| 国产成a人亚洲精品| 精品少妇一区二区| 欧美在线影院| 亚洲欧美激情小说另类| 久久久久久国产精品mv| 久久成人精品无人区| 日韩一区二区三区在线| 91免费版pro下载短视频| 亚洲欧洲精品一区二区精品久久久| 亚洲精品资源| 另类综合日韩欧美亚洲| 日韩女优视频免费观看| 欧美另类视频在线| 午夜精品一区二区三区电影天堂| 在线看国产一区| www.av精品| 亚洲人成网站精品片在线观看 | 国产精品乡下勾搭老头1| 精品国产乱子伦一区| 亚洲欧洲日本一区二区三区| 日韩电影一区二区三区| 欧美大肚乱孕交hd孕妇| 国产精品vip| 日本不卡的三区四区五区| 日韩欧美国产一区二区三区 | 亚洲综合激情网| 91精品久久久久久久91蜜桃| 国产综合欧美| 免费成人av资源网| 国产天堂亚洲国产碰碰| 久久最新视频| 女女同性精品视频| 午夜精品福利一区二区三区蜜桃| 欧美一区二区三区日韩| 91久久视频| 成人小视频免费在线观看| 亚洲欧洲综合另类在线| 欧美久久一区二区| 国产综合色产| 国内精品写真在线观看| 亚洲欧美综合在线精品| 欧美人与性动xxxx| 亚洲伦理精品| 波波电影院一区二区三区| 午夜伦欧美伦电影理论片| 久久久久久久精| 欧美性极品少妇| 在线免费观看一区二区三区| 国产传媒欧美日韩成人| 午夜久久久久久久久久一区二区| 久久影院午夜论| 日本电影亚洲天堂一区| 狠狠干成人综合网| 国产成人小视频| 日韩主播视频在线| 中文字幕佐山爱一区二区免费| 欧美一区二区观看视频| 久久综合精品一区| 欧美日韩伊人| 夜夜爽www精品| 99久久久久久| 国产一区视频在线看| 亚洲一区二区欧美| 中文字幕人成不卡一区| 亚洲精品在线电影| 7777精品伊人久久久大香线蕉完整版 | 欧美一区国产二区| 久久亚洲色图| 在线视频亚洲| 怡红院精品视频在线观看极品| 国产成人8x视频一区二区| 久久不见久久见免费视频7| 亚洲国产精品久久久久婷婷884| 亚洲国产激情av| 精品日韩成人av| 欧美一区二区精品久久911| 日本道免费精品一区二区三区| 在线亚洲一区| 亚洲激情不卡| 亚洲精品激情| 黑丝一区二区| 欧美sm重口味系列视频在线观看| 高清日韩电视剧大全免费| 极品少妇一区二区三区精品视频 | 日韩一级片在线观看| 欧美日韩国产首页在线观看| 欧美自拍偷拍午夜视频| 一本到三区不卡视频| 美女黄色成人网| 久久久久久久高潮| 午夜在线精品| 免费在线日韩av| 久久只有精品| 在线视频国产一区| 欧美少妇bbb| 欧美二区三区的天堂| 欧美日本一道本在线视频| 91精品婷婷国产综合久久性色| 欧美日韩精品一区二区三区| 欧美嫩在线观看| 日韩欧美另类在线| 久久久99免费| 国产精品久久久久久久蜜臀| 亚洲你懂的在线视频| 亚洲一区在线播放| 免费在线欧美视频| 国产在线不卡一区| 北岛玲一区二区三区四区| 95精品视频在线| 国产精品高清一区二区三区| 亚洲经典在线看| 久久久一本精品99久久精品66| 91电影在线观看| 欧美一区三区四区| 国产欧美综合在线观看第十页| 国产精品免费视频网站| 亚洲一区免费观看| 久久99九九99精品| 成人黄页在线观看| 伊人狠狠色j香婷婷综合| 久久精品卡一| 欧美一区二区精美| 国产精品国产自产拍高清av| 午夜视频一区二区三区|