91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    久久精品女人天堂| 日韩成人一级大片| 亚洲开发第一视频在线播放| 性做久久久久久| 久久免费精品国产久精品久久久久| 在线成人h网| 国产精品一区在线观看你懂的| 中文字幕精品一区二区精品绿巨人 | 99久久久久免费精品国产| 亚洲一二三级电影| 26uuu国产在线精品一区二区| 久久这里只有| 午夜精品久久| 韩国视频一区二区| 亚洲综合久久久| 久久久久久久久久看片| 国产亚洲一二三区| 欧美一区二区三区影视| 久久精品女人天堂| 欧美亚洲国产怡红院影院| 国内精品久久久久久久影视麻豆| 国产综合色在线| 成人黄色网址在线观看| 免费成人性网站| 亚洲一区二区三区免费视频| 午夜精品成人在线视频| 亚洲视频免费在线观看| 久久品道一品道久久精品| 国产人成亚洲第一网站在线播放| 欧美一区三区二区| 欧美国产一区二区在线观看 | 国产一级精品在线| 日韩高清国产一区在线| 激情五月激情综合网| 99国内精品久久| 亚洲国产精品久久久久久女王| 一本久久a久久精品亚洲| 一区二区国产精品| 亚洲小说区图片区| 你懂的亚洲视频| 不卡一二三区首页| 亚洲高清激情| 欧美日韩二区三区| 欧美日韩一区高清| 欧美日韩亚洲丝袜制服| 久久亚洲私人国产精品va媚药| 亚洲乱码中文字幕| 国产精品国产三级国产普通话三级 | 一本大道av一区二区在线播放| 日韩一区二区免费在线观看| 欧美日韩久久不卡| 国产欧美视频一区二区| 日韩中文字幕不卡| 日本怡春院一区二区| av激情亚洲男人天堂| 成人小视频在线观看| 成人动漫中文字幕| 国产日韩一区| 色av成人天堂桃色av| 91成人网在线| 中文字幕日韩av资源站| 亚洲综合一二三区| av资源网一区| 欧美色图12p| 一区二区三区欧美亚洲| 日本视频一区二区| 激情综合在线| 日韩欧美的一区二区| 国产区在线观看成人精品| 青娱乐精品视频在线| 在线日韩电影| 国产免费成人在线视频| 国产不卡视频在线观看| av午夜精品一区二区三区| 久久蜜桃资源一区二区老牛| 国产精品盗摄一区二区三区| 成人18精品视频| 欧美日韩情趣电影| 性做久久久久久| 亚洲区一区二区三区| 欧美亚洲国产一区在线观看网站 | 91蜜桃免费观看视频| 亚洲精品一区二区三| 久久先锋资源网| 风间由美一区二区av101| 色偷偷久久人人79超碰人人澡| 日韩理论片一区二区| 欧美激情一区| 久久久久久久精| 成人中文字幕电影| 欧美一区三区四区| 国产成人精品一区二| 亚洲日本激情| 中文字幕一区av| 国产精品二区影院| 国产欧美1区2区3区| 女生裸体视频一区二区三区| 欧美不卡一二三| 亚洲高清在线视频| 国产精品一区二区欧美| 精品久久久久久久久久久久久久久 | 欧美日韩精品免费观看视频| 免费日韩伦理电影| 色噜噜狠狠一区二区三区果冻| 天天综合网 天天综合色| 狂野欧美一区| 蜜臀久久久久久久| 99国产精品国产精品久久| 日韩一级大片在线| 99视频精品全部免费在线| 久久综合色8888| 欧美 日韩 国产 一区| 中文字幕乱码一区二区免费| 午夜国产精品视频免费体验区| 国产精品美女www爽爽爽| 国产高清不卡一区| 欧美大黄免费观看| 欧美1区视频| 综合分类小说区另类春色亚洲小说欧美 | 成人黄色在线看| 中文字幕一区二区在线观看| 国产日韩欧美一区在线| 强制捆绑调教一区二区| 91精品国产综合久久久久| 亚洲成人一区二区在线观看| 色婷婷av一区二区| 国产精华液一区二区三区| 久久精品在线观看| 国产欧美一级| 国内成人自拍视频| 国产亚洲欧洲997久久综合 | 91精品办公室少妇高潮对白| 国产成人免费在线视频| 国产精品第五页| 在线免费视频一区二区| 亚洲一卡二卡三卡四卡 | 亚洲激情av在线| 欧美三级电影网| 欧美大片专区| 视频精品一区二区| xfplay精品久久| 中文国产一区| 国产mv日韩mv欧美| 亚洲丝袜另类动漫二区| 欧美日韩小视频| 国内精品久久久久久久果冻传媒| 日韩一区精品字幕| 国产日韩亚洲欧美综合| 久久精品一区| 欧美一区二视频在线免费观看| 亚洲国产视频在线| 日韩欧美亚洲国产精品字幕久久久 | 91在线码无精品| 免费在线成人网| 中文字幕日韩精品一区| 这里只有精品视频在线观看| 在线看无码的免费网站| 国产曰批免费观看久久久| 中文字幕日韩精品一区| 91精选在线观看| 国产精品日韩欧美一区二区| bt欧美亚洲午夜电影天堂| 人人狠狠综合久久亚洲| 亚洲欧美在线高清| 日韩欧美aaaaaa| 一本色道亚洲精品aⅴ| 国语自产精品视频在线看8查询8| 激情都市一区二区| 亚洲女与黑人做爰| 老妇喷水一区二区三区| 欧美日韩一卡| 天天亚洲美女在线视频| 欧美国产亚洲另类动漫| 欧美精品18+| 国产综合欧美在线看| 懂色av一区二区夜夜嗨| 日韩和欧美的一区| 亚洲黄色性网站| 国产精品欧美一级免费| 精品国产伦一区二区三区观看体验 | 三级精品在线观看| 亚洲欧美另类小说| 久久青草国产手机看片福利盒子 | 亚洲精品在线电影| 91精品国产色综合久久不卡蜜臀 | 91麻豆精品国产91久久久久久| 久久久久久久久久久一区| 亚洲裸体视频| 国产在线欧美| 欧美特黄一区| 欧美1区免费| 97久久精品人人澡人人爽| 国产成人免费9x9x人网站视频| 久久福利资源站| 国产精品萝li| 日本一区免费视频| 久久久蜜臀国产一区二区| 2020日本不卡一区二区视频| 精品国产一区二区三区四区四| 宅男在线国产精品|