91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    欧日韩精品视频| 国产欧美日韩综合| 日本欧美加勒比视频| 91精品国产色综合久久不卡电影| 国产乱一区二区| 亚洲综合丁香婷婷六月香| 很黄很黄激情成人| 欧美黄色免费| 91视频在线观看免费| 日韩美女久久久| 国产女人水真多18毛片18精品视频| 欧美中文字幕| 国产精品视频| 一区二区三区成人| 亚洲欧美中日韩| 久久色在线观看| 一区二区三区四区精品在线视频| 欧美日韩国产片| 香蕉免费一区二区三区在线观看| 91国产免费观看| 日本成人超碰在线观看| 亚洲欧洲另类国产综合| 国产精品久久久久久户外露出| 国产精品情趣视频| 国产精品每日更新| 亚洲私人影院在线观看| 亚洲欧美成aⅴ人在线观看| 不卡电影免费在线播放一区| 亚洲午夜精品在线| 秋霞成人午夜伦在线观看| 国内精品国产成人| 亚洲成人在线| 精品国产免费久久| 亚洲影院理伦片| 成人丝袜18视频在线观看| 亚洲欧美日韩视频二区 | 欧美日韩国产综合视频在线| 国产精品视频免费观看| 精品少妇一区二区三区在线视频| 亚洲一区二区欧美| 91麻豆国产自产在线观看| 久久国产精品久久w女人spa| 久久综合视频网| 国产精品99精品久久免费| 国产一区二区你懂的| 久久亚洲一区二区三区明星换脸 | 国产美女久久久久| 在线观看国产一区二区| 亚洲亚洲精品在线观看| 欧美午夜精品| 国产精品二区一区二区aⅴ污介绍| 高清久久久久久| 欧美精品日韩精品| 精品一区精品二区高清| 久久裸体视频| 午夜精品爽啪视频| 亚洲影院免费| 亚洲午夜久久久久久久久电影网| 狠狠色狠狠色综合日日tαg| 国产精品三级电影| 亚洲经典在线看| 亚洲自拍偷拍av| 久久riav二区三区| 强制捆绑调教一区二区| 欧美专区亚洲专区| 国产精品一区二区果冻传媒| 日韩欧美亚洲国产另类| 丁香婷婷综合激情五月色| 欧美电影免费观看高清完整版在线 | 成人教育av在线| 精品国产一区久久| 国产精品vip| 亚洲综合小说图片| 一本一道久久a久久精品| 狠狠色丁香婷综合久久| 精品粉嫩aⅴ一区二区三区四区 | 中文在线免费一区三区高中清不卡| 国产精品成人观看视频免费| 亚洲情趣在线观看| 在线免费观看视频一区| 国产98色在线|日韩| 欧美激情在线观看视频免费| 1000部精品久久久久久久久| 天天色综合成人网| 欧美tickling挠脚心丨vk| 在线免费观看一区二区三区| 日韩在线a电影| 精品国产三级a在线观看| 精品999网站| 美女在线一区二区| 国产欧美视频在线观看| 美女久久一区| 欧美精品网站| 精品一区二区三区在线播放视频| 久久久久久久久久电影| 一本色道久久综合狠狠躁的推荐| 成人黄色a**站在线观看| 亚洲成人黄色小说| 久久无码av三级| 91成人在线免费观看| 欧美视频在线观看| 国产一区二区在线影院| 亚洲精品中文字幕在线观看| 欧美一区二区在线看| 99精品视频免费全部在线| jlzzjlzz亚洲日本少妇| 日韩av在线发布| 亚洲欧美成人一区二区三区| 精品成人在线观看| 欧美日韩一级片在线观看| 亚洲一区二区三区精品视频 | 久久久999| 999在线观看精品免费不卡网站| 国产一区二区三区久久久| 亚洲午夜视频在线观看| 亚洲同性gay激情无套| 26uuu国产一区二区三区| 欧美久久一二三四区| 久久网站免费| 日本福利一区二区| 久久一区二区三区av| 国产欧美日韩一区二区三区| 欧美日韩亚洲一区二区三区在线观看| 成人高清在线视频| 国产传媒日韩欧美成人| 精品一区二区三区在线播放视频 | 亚洲欧美aⅴ...| 夜夜精品浪潮av一区二区三区| 国产精品高潮呻吟久久| 日本一区二区动态图| 国产精品黄色在线观看| 国产精品成人在线观看| 一区精品在线播放| 亚洲视频一区在线观看| 亚洲精品久久7777| 丝袜美腿亚洲一区| 精品午夜久久福利影院| 国产高清精品在线| 91色porny| 亚洲精品婷婷| 色综合av在线| 91精品视频网| 久久一区二区视频| 一区二区三区四区在线免费观看 | 日韩精品电影在线| 国产精品一二三在| 欧美精品七区| 色哟哟精品一区| 日韩一区二区三区电影| 国产三级欧美三级| 亚洲一区二区欧美激情| 久88久久88久久久| 欧美日韩国内| 欧美丝袜自拍制服另类| 精品av久久707| 一区二区三区中文字幕在线观看| 蜜桃视频在线一区| 色综合一个色综合亚洲| 亚洲欧美久久久| 久久蜜桃av一区精品变态类天堂| 18涩涩午夜精品.www| 捆绑变态av一区二区三区| 欧美 日韩 国产一区二区在线视频| 999亚洲国产精| 精品国产免费人成在线观看| 亚洲成人激情社区| 91免费在线播放| 欧美三级视频在线| 一区二区三区在线免费观看| 成人国产精品免费| 色老头久久综合| 亚洲欧美综合在线精品| 国产精品一区二区在线播放 | 精品日韩一区二区三区免费视频| 亚洲美女视频在线| 欧美一区二区三区另类| 8v天堂国产在线一区二区| 亚洲一区免费视频| 欧美午夜精品| 久久久噜噜噜久久人人看| 久久电影网电视剧免费观看| 99一区二区| 国产欧美一区二区精品仙草咪| 国内欧美视频一区二区 | www国产成人免费观看视频 深夜成人网| 日精品一区二区| 国产精品日韩高清| 亚洲激情网站免费观看| 欧美日韩一区在线观看视频| 日韩美女在线视频| 国内精品视频666| 欧美精品久久天天躁| 美国毛片一区二区| 欧洲一区二区三区免费视频| 天堂午夜影视日韩欧美一区二区| 伊人成人在线视频| 亚洲男人的天堂av| 国产女主播一区二区| 日韩精品一级二级| 欧美主播一区二区三区|