91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做COMP9020 程序 Assignment 1

時間:2024-02-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


COMP**20 Assignment 1 2024 Term 1

  Due: Thursday, 29th February, 18:00 (AEDT)

Submission is through inspera. Your assignment will be automatically submitted at the above due date. If you manually submit before this time, you can reopen your submission and con- tinue until the deadline.

If you need to make a submission after the deadline, please use this link to request an extension: https://www.cse.unsw.edu.au/ cs**20/extension_request.html. Unless you are granted Special Consideration, a lateness penalty of 5% of raw mark per 24 hours or part thereof for a maximum of 5 days will apply. You can request an extension up to 5 days after the deadline.

Answers are expected to be provided either:

• In the text box provided using plain text, including unicode characters and/or the built-in formula editor (diagrams can be drawn using the built-in drawing tool); or

• as a pdf (e.g. using LATEX) – each question should be submitted on its own pdf, with at most one pdf per question.

Handwritten solutions will be accepted if unavoidable, but that we don’t recommend this ap- proach as the assessments are designed to familiarise students with typesetting mathematics in preparation for the final exam and for future courses.

Discussion of assignment material with others is permitted, but the work submitted must be your own in line with the University’s plagiarism policy.

  Problem 1

For x,y ∈ Z, we define the set

Sx,y ={mx+ny:m,n∈Z}

a) Provethatforallm,n,x,y,z∈Z,ifz|xandz|ythenz|(mx+ny).

(33 marks)

 b) Prove that 2 is the smallest positive element of S4,6.

Hint: To show that the element is the smallest, you will need to show that some values cannot be obtained.

Use the fact proven in part (a)

c) Find the smallest positive element of S−6,15.

For the following questions let d = gcd(x, y) and z be the smallest positive number in Sx,y, or 0 if there are no positive numbers in Sx,y.

d) ProvethatSx,y ⊆{n∈Z:d|n}.

e) Prove that d ≤ z.

f) Prove that z|x and z|y.

Hint: consider (x%z) and (y%z)

g) Prove that z ≤ d.

h) Using the answers from (e) and (g), explain why Sx,y ⊇ {n ∈ Z : d|n}

4 marks

4 marks

4 marks

3 marks

8 marks

2 marks

4 marks

1

4 marks

 

 Remark

The result that there exists m, n ∈ Z such that mx + ny = gcd(x, y) is known as Bézout’s identity. Two useful consequences of Bézout’s identity are:

• If c|x and c|y then c| gcd x, y (i.e. gcd(x, y) is a multiple of all common factors of x and y) • If gcd(x, y) = 1, then there is a unique w ∈ [0, y) such that xw =(y) 1 (i.e. multiplicative

inverses exist in modulo y, if x is coprime with y)

Problem 2 (16 marks) Proof Assistant: https://cgi.cse.unsw.edu.au/∼cs**20/cgi-bin/proof_assistant?A1

Prove, using the laws of set operations (and any results proven in lectures), the following identities hold for all sets A, B, C.

   a) (Annihilation) A ∩ ∅ = ∅

b) (A\C)∪(B\C) = (A∪B)\C

c) A ⊕ U = Ac

d) (DeMorgan’slaw)(A∩B)c =Ac∪Bc

4 marks

4 marks

4 marks

4 marks

4 marks

4 marks

8 marks

6 marks

 Problem 3

Let Σ = {a, b}, and let

(26 marks)

d) Prove that:

L2 ∩ L3 = (Σ=6)∗

negative even number, prove that:

L2L3 =Σ∗\{a,b}

L2 = (Σ=2)∗

and L3 = (Σ=3)∗.

a) Give a complete description of Σ=2 and Σ=3; and an informal description of L2 and L3.

b) Prove that for all w ∈ L1, length(w) =(2) 0.

c) Show that Σ2 and Σ3 give a counter-example to the proposition that for all sets X,Y ⊆ Σ∗, (X ∩ Y)∗ = X∗ ∩ Y∗.

e) Using the observation that every natural number n ≥ 2 is either even or 3 more than a non-

2

4 marks

 

Advice on how to do the assignment

Collaboration is encouraged, but all submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

• Assignments are to be submitted in inspera.

• When giving answers to questions, we always would like you to prove/explain/motivate your answers. You are being assessed on your understanding and ability.

• Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for your worst answer, as this indicates how well you understood the question.

• Some of the questions are very easy (with the help of external resources). You may make use of external material provided it is properly referenced1 – however, answers that depend too heavily on external resources may not receive full marks if you have not adequately demonstrated ability/understanding.

• Questions have been given an indicative difficulty level:

Credit Distinction High distinction

This should be taken as a guide only. Partial marks are available in all questions, and achievable

by students of all abilities.

    Pass

 1Proper referencing means sufficient information for a marker to access the material. Results from the lectures or textbook can be used without proof, but should still be referenced.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:CSC173代做、Java編程設計代寫
  • 下一篇:莆田鞋正確拿貨方式:盤點十個莆田鞋拿貨渠道
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    欧美日韩国产另类不卡| 91麻豆国产在线观看| 亚洲欧洲一二三| wwww国产精品欧美| 国产成人免费视频精品含羞草妖精 | 最新高清无码专区| 欧美成人亚洲| 久久久久久久网| 99久久综合色| 精品国产免费一区二区三区香蕉| 久久国产精品99精品国产| 久久精品五月婷婷| 亚洲成av人影院在线观看网| 日韩视频一区| 亚洲网友自拍偷拍| 亚洲中字黄色| 丝袜诱惑制服诱惑色一区在线观看| 中文精品一区二区三区| 一区二区成人在线| 免费在线成人av| 香蕉成人啪国产精品视频综合网| 国产精品日韩欧美一区二区三区| 亚洲综合另类小说| 久久蜜桃精品| 九色综合狠狠综合久久| 欧美日韩日日骚| 国产成人亚洲精品狼色在线| 精品久久久久久综合日本欧美| 成人午夜视频在线观看| 久久久久久麻豆| 韩国一区二区三区美女美女秀| 亚洲欧洲成人自拍| 国产精品美女久久久| 天天综合天天综合色| 欧美亚洲另类激情小说| 国产乱码精品一区二区三区忘忧草 | 欧美日韩精品高清| 不卡视频免费播放| 国产精品三级av| 国产日韩一区二区三区在线播放 | 亚洲日本青草视频在线怡红院| 欧美xingq一区二区| 波多野结衣91| 亚洲私人影院在线观看| 久久亚洲国产精品一区二区 | 成人午夜免费av| 国产精品嫩草影院av蜜臀| 夜夜精品视频| 久久成人久久爱| 久久先锋影音av| 在线视频精品一区| 国产一区在线观看麻豆| 精品国免费一区二区三区| 欧美日韩 国产精品| 亚洲国产日韩a在线播放性色| 欧美男人的天堂一二区| 午夜久久影院| 日韩成人一区二区| 2022国产精品视频| 国产精品久久久久久模特 | 国产成人综合视频| 亚洲欧洲美洲综合色网| 欧美网站大全在线观看| 99v久久综合狠狠综合久久| 亚洲精品成人天堂一二三| 欧美精品久久99久久在免费线| 欧美 日韩 国产 一区| 午夜电影一区二区| 精品福利视频一区二区三区| 中文精品视频| 国产成人av在线影院| 一区二区三区在线观看视频| 9191成人精品久久| 亚洲精品综合| 国产成人av电影在线观看| 中文字幕一区二| 欧美一区二区三区在线观看| 日韩亚洲国产精品| 丁香一区二区三区| 午夜精品影院在线观看| 26uuu国产日韩综合| 久久综合图片| 欧美黄色一级视频| 九九视频精品免费| 亚洲欧美精品午睡沙发| 日韩亚洲欧美中文三级| 久久中文在线| 亚洲国产第一| 盗摄精品av一区二区三区| 天堂一区二区在线| 国产精品麻豆99久久久久久| 91麻豆精品国产自产在线 | 欧美精品亚洲二区| 先锋亚洲精品| 激情综合久久| 99久久精品一区二区| 美女视频黄频大全不卡视频在线播放| 国产精品美女久久久久久久网站| 欧美一区二区精美| 一本久道久久综合中文字幕 | 麻豆久久久9性大片| 悠悠资源网久久精品| 99久久国产综合精品麻豆| 精品夜夜嗨av一区二区三区| 亚洲午夜在线观看视频在线| 日本一区二区免费在线| 日韩你懂的在线播放| 欧美日韩精品是欧美日韩精品| 国产麻豆综合| 日韩午夜免费视频| 国产精品xxx在线观看www| kk眼镜猥琐国模调教系列一区二区| 久久 天天综合| 日本大胆欧美人术艺术动态| 亚洲午夜久久久久| 亚洲精品菠萝久久久久久久| 国产精品视频你懂的| 国产人久久人人人人爽| 久久这里都是精品| 精品成人在线观看| 精品少妇一区二区三区在线视频| 在线成人免费视频| 欧美浪妇xxxx高跟鞋交| 欧美日韩夫妻久久| 欧美日韩一本到| 欧美人成免费网站| 欧美日韩一本到| 欧美另类变人与禽xxxxx| 在线视频你懂得一区二区三区| 久久久夜夜夜| 色欧美乱欧美15图片| 色狠狠桃花综合| 91久久精品国产91性色tv| 久久久国产精品一区二区三区| 国产精品久久久对白| 欧美亚洲三区| 久久综合网络一区二区| 久久久久国产精品一区二区| 午夜一区二区三区不卡视频| 久久亚洲风情| 欧美日韩美女一区二区| 欧美精品日韩综合在线| 日韩欧美中文一区| 久久亚洲综合色一区二区三区| 久久久国产综合精品女国产盗摄| 国产无人区一区二区三区| 国产欧美综合在线| 亚洲视频在线观看三级| 一级特黄大欧美久久久| 日韩中文字幕一区二区三区| 久久国产精品免费| 国产成人啪免费观看软件| 99麻豆久久久国产精品免费优播| 欧美成人69| 国产精品久久九九| 在线观看亚洲一区| 日韩久久免费av| 欧美国产在线观看| 亚洲一区二区欧美| 久久国产综合精品| 成人av小说网| 亚洲激情一区二区| 日本久久一区二区三区| 欧美一级一区二区| 欧美国产日韩在线观看| 亚洲一区二区三区美女| 久久99久久精品欧美| 北条麻妃一区二区三区| 亚洲黄色一区二区三区| 91精品福利在线| 精品国产第一区二区三区观看体验| 国产三级精品三级在线专区| 亚洲综合自拍偷拍| 国产综合久久久久久久久久久久| 91原创在线视频| 国产精品永久入口久久久| 欧美精品色一区二区三区| 国产精品午夜免费| 石原莉奈在线亚洲三区| 成人av影视在线观看| 99国产精品私拍| 欧美电影在哪看比较好| 亚洲欧洲日产国产综合网| 免费在线观看视频一区| 欧美有码视频| 在线免费av一区| 国产午夜精品一区二区三区四区| 午夜一区二区三区视频| 成人免费毛片aaaaa**| 国产欧美日韩| 日韩欧美成人激情| 亚洲成人三级小说| 91免费版在线看| 91国偷自产一区二区三区成为亚洲经典 | 另类av一区二区| 久久久精品一品道一区| 日本视频一区二区三区| 欧美日韩在线不卡一区| 欧美日韩在线一区二区| 亚洲少妇30p|