91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CEG5301代做、MATLAB編程語言代寫

時間:2024-03-15  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



CEG5301 Machine Learning with Applications:
Part I: Homework #3
Important note: the due date is 17/03/2024. Please submit the softcopy of your report
to the submission folder in CANVAS. Late submission is not allowed unless it is well
justified. Please supply the MATLAB code or Python Code in your answer if computer
experiment is involved.
Please note that the MATLAB toolboxes for RBFN and SOM are not well developed.
Please write your own codes to implement RBFN and SOM instead of using the
MATLAB toolbox.
Q1. Function Approximation with RBFN (10 Marks)
Consider using RBFN to approximate the following function:
𝑦𝑦 = 1.2 sin(𝜋𝜋𝜋𝜋) − cos(2.4𝜋𝜋𝜋𝜋) , 𝑓𝑓𝑓𝑓𝑓𝑓 w**9;w**9; ∈ [−1.6, 1.6]
The training set is constructed by dividing the range [−1.6, 1.6] using a uniform step
length 0.08, while the test set is constructed by dividing the range [−1.6, 1.6] using
a uniform step length 0.01. Assume that the observed outputs in the training set are
corrupted by random noise as follows.
𝑦𝑦(𝑖𝑖) = 1.2 sin 𝜋𝜋𝜋𝜋(𝑖𝑖)  − cos 2.4𝜋𝜋𝜋𝜋(𝑖𝑖)  + 0.3𝑛𝑛(𝑖𝑖)
where the random noise 𝑛𝑛(𝑖𝑖) is Gaussian noise with zero mean and stand deviation of
one, which can be generated by MATLAB command randn. Note that the test set is not
corrupted by noises. Perform the following computer experiments:
a) Use the exact interpolation method (as described on pages 17-26 in the slides of
lecture five) and determine the weights of the RBFN. Assume the RBF is Gaussian
function with standard deviation of 0.1. Evaluate the approximation performance of
the resulting RBFN using the test set.
 (3 Marks)
b) Follow the strategy of “Fixed Centers Selected at Random” (as described on page 38
in the slides of lecture five), randomly select 20 centers among the sampling points.
Determine the weights of the RBFN. Evaluate the approximation performance of the
resulting RBFN using test set. Compare it to the result of part a).
(4 Marks)
c) Use the same centers and widths as those determined in part a) and apply the
regularization method as described on pages 43-46 in the slides for lecture five. Vary
the value of the regularization factor and study its effect on the performance of RBFN.
(3 Marks)
2
Q2. Handwritten Digits Classification using RBFN (20 Marks)
In this task, you will build a handwritten digits classifier using RBFN. The training data
is provided in MNIST_M.mat. Each binary image is of size 28*28. There are 10
classes in MNIST_M.mat; please select two classes according to the last two different
digits of your matric number (e.g. A0642311, choose classes 3 and 1; A1234567,
choose classes 6 and 7). The images in the selected two classes should be assigned the
label “1” for this question’s binary classification task, while images in all the remaining
eight classes should be assigned the label “0”. Make sure you have selected the correct
2 classes for both training and testing. There will be some mark deduction for wrong
classesselected. Please state your handwritten digit classes for both training and testing.
In MATLAB, the following code can be used to load the training and testing data:
-------------------------------------------------------------------------------------------------------
load mnist_m.mat;
% train_data  training data, 784x1000 matrix
% train_classlabel  the labels of the training data, 1x1000 vector
% test_data  test data, 784x250 matrix
% train_classlabel  the labels of the test data, 1x250 vector
-------------------------------------------------------------------------------------------------------
After loading the data, you may view them using the code below:
-------------------------------------------------------------------------------------------------------
tmp=reshape(train_data(:,column_no),28,28);
imshow(tmp);
-------------------------------------------------------------------------------------------------------
To select a few classes for training, you may refer to the following code:
-------------------------------------------------------------------------------------------------------
trainIdx = find(train_classlabel==0 | train_classlabel==1 | train_classlabel==2); % find the
location of classes 0, 1, 2
Train_ClassLabel = train_classlabel(trainIdx);
Train_Data = train_data(:,trainIdx);
-------------------------------------------------------------------------------------------------------
Please use the following code to evaluate:
-------------------------------------------------------------------------------------------------------
TrAcc = zeros(1,1000);
TeAcc = zeros(1,1000);
thr = zeros(1,1000);
TrN = length(TrLabel);
TeN = length(TeLabel);
for i = 1:1000
 t = (max(TrPred)-min(TrPred)) * (i-1)/1000 + min(TrPred);
 thr(i) = t;

TrAcc(i) = (sum(TrLabel(TrPred<t)==0) + sum(TrLabel(TrPred>=t)==1)) / TrN;
TeAcc(i) = (sum(TeLabel(TePred<t)==0) + sum(TeLabel(TePred>=t)==1)) / TeN;
end
3
plot(thr,TrAcc,'.- ',thr,TeAcc,'^-');legend('tr','te');
-------------------------------------------------------------------------------------------------------
TrPred and TePred are determined by TrPred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TrData(: , j)) Ү**;Ү**;
𝑖𝑖=0 and
TePred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TeData(: , j)) Ү**;Ү**;
𝑖𝑖=0 where Ү**;Ү**; is the number of hidden neurons.
TrData and TeData are the training and testing data selected based on your matric
number. TrLabel and TeLabel are the ground-truth label information (Convert to {0,1}
before use!).
You are required to complete the following tasks:
a) Use Exact Interpolation Method and apply regularization. Assume the RBF is
Gaussian function with standard deviation of 100. Firstly, determine the weights of
RBFN without regularization and evaluate its performance; then vary the value of
regularization factor and study its effect on the resulting RBFNs’ performance.
(6 Marks)

b) Follow the strategy of “Fixed Centers Selected at Random” (as described in page 38
of lecture five). Randomly select 100 centers among the training samples. Firstly,
determine the weights of RBFN with widths fixed at an appropriate size and compare
its performance to the result of a); then vary the value of width from 0.1 to 10000 and
study its effect on the resulting RBFNs’ performance.
(8 Marks)

c) Try classical “K-Mean Clustering” (as described in pages 39-40 of lecture five) with
2 centers. Firstly, determine the weights of RBFN and evaluate its performance; then
visualize the obtained centers and compare them to the mean of training images of each
class. State your findings.
(6 Marks)
4
Q3. Self-Organizing Map (SOM) (20 Marks)
a) Write your own code to implement a SOM that maps a **dimensional output layer
of 40 neurons to a “hat” (sinc function). Display the trained weights of each output
neuron as points in a 2D plane, and plot lines to connect every topological adjacent
neurons (e.g. the 2nd neuron is connected to the 1st and 3rd neuron by lines). The training
points sampled from the “hat” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
x = linspace(-pi,pi,400);
trainX = [x; sinc(x)];  2x400 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(3 Marks)
b) Write your own code to implement a SOM that maps a 2-dimensional output layer
of 64 (i.e. 8×8) neurons to a “circle”. Display the trained weights of each output neuron
as a point in the 2D plane, and plot lines to connect every topological adjacent neurons
(e.g. neuron (2,2) is connected to neuron (1,2) (2,3) (3,2) (2,1) by lines). The training
points sampled from the “circle” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
X = randn(800,2);
s2 = sum(X.^2,2);
trainX = (X.*repmat(1*(gammainc(s2/2,1).^(1/2))./sqrt(s2),1,2))';  2x800 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(4 Marks)
c) Write your own code to implement a SOM that clusters and classifies handwritten
digits. The training data is provided in Digits.mat. The dataset consists of images in 5
classes, namely 0 to 4. Each image with the size of 28*28 is reshaped into a vector and
stored in the Digits.mat file. After loading the mat file, you may find the 4 matrix/arrays,
which respectively are train_data, train_classlabel, test_data and test_classlabel. There
are totally 1000 images in the training set and 100 images in the test set. Please omit 2
classes according to the last digit of your matric number with the following rule:
omitted class1 = mod(the last digit, 5), omitted_class2 = mod(the last digit+1, 5). For
example, if your matric number is A06423**, ignore classes mod(7,5)=2 and
mod(8,5)=3; A1234569, ignore classes 4 and 0.
Thus, you need to train a model for a 3-classes classification task. Make sure you have
selected the correct 3 classes for both training and testing. There will be some mark
deduction for wrong classes selected. Please state your handwritten digit classes for
both training and testing.
After loading the data, complete the following tasks:
c-1) Print out corresponding conceptual/semantic map of the trained SOM (as
described in page 24 of lecture six) and visualize the trained weights of each output
neuron on a 10×10 map (a simple way could be to reshape the weights of a neuron
5
into a 28×28 matrix, i.e. dimension of the inputs, and display it as an image). Make
comments on them, if any.
(8 Marks)
c-2) Apply the trained SOM to classify the test images (in test_data). The
classification can be done in the following fashion: input a test image to SOM, and
find out the winner neuron; then label the test image with the winner neuron’s label
(note: labels of all the output neurons have already been determined in c-1).
Calculate the classification accuracy on the whole test set and discuss your
findings.
(5 Marks)
The recommended values of design parameters are:
1. The size of the SOM is 1×40 for a), 8×8 for b), 10×10 for c).
2. The total iteration number N is set to be 500 for a) & b), 1000 for c). Only the
first (self-organizing) phase of learning is used in this experiment.
3. The learning rate 𝜂𝜂(𝑛𝑛) is set as:
𝜂𝜂(𝑛𝑛) = 𝜂𝜂0 exp  − 𝑛𝑛
𝜏𝜏2
  , 𝑛𝑛 = 0,1,2, …
where 𝜂𝜂0 is the initial learning rate and is set to be 0.1, 𝜏𝜏2 is the time constant
and is set to be N.
4. The time-varying neighborhood function is:
ℎ𝑗𝑗,𝑖𝑖(w**9;w**9;)(𝑛𝑛) = exp  − 𝑑𝑑𝑗𝑗,𝑖𝑖
2
2ҵ**;ҵ**;(𝑛𝑛)2  , 𝑛𝑛 = 0,1,2, …
where 𝑑𝑑𝑗𝑗,𝑖𝑖 is the distance between neuron j and winner i, ҵ**;ҵ**;(𝑛𝑛) is the effective
width and satisfies:
ҵ**;ҵ**;(𝑛𝑛) = ҵ**;ҵ**;0 exp  − 𝑛𝑛
𝜏𝜏1
  , 𝑛𝑛 = 0,1,2, …
where ҵ**;ҵ**;0 is the initial effective width and is set according to the size of output
layer’s lattice, 𝜏𝜏1 is the time constant and is chosen as 𝜏𝜏𝑖𝑖 = Ү**;Ү**;
log(ҵ**;ҵ**;0)
.
Again, please feel free to experiment with other design parameters which may be
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP26020、代做c/c++,Java編程設(shè)計(jì)
  • 下一篇:代寫ACS130、代做C++設(shè)計(jì)編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    亚洲欧美日本视频在线观看| 欧美绝品在线观看成人午夜影视| 国产亚洲综合性久久久影院| 91精品久久久久久久久99蜜臂| 99久久99久久精品免费看蜜桃| 一区二区三区精密机械公司| 亚洲色图制服诱惑 | av成人免费观看| 激情综合自拍| 亚洲黄色在线| 国产日韩高清一区二区三区在线| 成人免费看视频| 国产91精品一区二区麻豆网站| 亚洲18影院在线观看| 天堂午夜影视日韩欧美一区二区| 中文字幕高清不卡| 国产精品天美传媒| 中文字幕一区二区三区四区| 亚洲乱码精品一二三四区日韩在线 | 成人综合婷婷国产精品久久蜜臀| 日本中文字幕一区二区有限公司| 国产精品欧美久久久久一区二区| 91精品国产综合久久久久久久 | 欧美videofree性高清杂交| 精品嫩草影院久久| 国产日韩欧美麻豆| 亚洲视频小说图片| 夜夜嗨av一区二区三区| 日韩精品成人一区二区三区| 久久电影网站中文字幕| 国产一区二区电影| av在线免费不卡| 国产专区一区| 性久久久久久| 欧美男生操女生| 久久男人中文字幕资源站| 国产精品久久久久久亚洲伦 | 青青草国产成人99久久| 国产乱一区二区| 色综合天天综合| 国产偷久久久精品专区| 在线精品视频免费观看| 欧美一区二区三区四区五区| 久久一日本道色综合| 亚洲特级片在线| 久久国产毛片| 欧美一级日韩一级| 中文成人av在线| 亚洲二区视频在线| 国产乱人伦偷精品视频免下载| 久久福利视频一区二区| 99久久精品免费| 一本色道久久综合亚洲二区三区| 一区二区自拍| 欧美在线观看视频一区二区三区| 色狠狠综合天天综合综合| 欧美人成免费网站| 国产欧美日韩久久| 三级欧美在线一区| 成人动漫视频在线| 国产精品久久久久久久久婷婷| 亚洲欧美99| 日韩一区二区在线看片| 136国产福利精品导航| 毛片不卡一区二区| 欧美日韩亚洲一区二区三区在线| 欧美 日韩 国产 一区| 国产色综合网| 日韩一级黄色片| 亚洲精品成a人| 国产精品中文字幕欧美| 亚洲国产专区| 91精品国产色综合久久| 亚洲日本在线看| 国产酒店精品激情| 99亚洲一区二区| 日韩一级大片在线| 亚洲午夜一二三区视频| 夫妻av一区二区| 亚洲综合不卡| 久久久久88色偷偷免费| 午夜精品影院在线观看| 91亚洲精品久久久蜜桃| 日本丰满少妇一区二区三区| 国产天堂亚洲国产碰碰| 伦理电影国产精品| 亚洲性图久久| 日韩一卡二卡三卡四卡| 亚洲国产一区二区三区青草影视| 日韩vs国产vs欧美| 欧美日韩在线精品一区二区三区| 在线观看成人一级片| 欧美日本韩国一区二区三区视频| 日韩一区二区中文字幕| 亚洲成a人v欧美综合天堂| 91在线观看一区二区| 91极品美女在线| 一区视频在线播放| 高清av一区二区| 色婷婷国产精品久久包臀| 国产精品免费网站在线观看| 欧美欧美午夜aⅴ在线观看| 亚洲视频在线一区观看| 国产高清在线观看免费不卡| 久久久777| 亚洲欧洲日本在线| 成人精品鲁一区一区二区| 91国偷自产一区二区开放时间| 欧美一卡二卡在线观看| 丝袜亚洲精品中文字幕一区| 一区二区视频欧美| 欧美va日韩va| 狠狠久久亚洲欧美| 美女网站久久| 亚洲美女在线一区| 欧美大片专区| 欧美mv日韩mv| 国产在线国偷精品产拍免费yy| 欧美涩涩网站| 精品国产乱码久久久久久免费 | 国产一区二区三区日韩| 亚洲一区二区三区高清| 国产精品久久久久影院| 97精品电影院| 欧美日韩国产电影| 奇米影视7777精品一区二区| 亚洲精品欧美| 国产精品污污网站在线观看| 成人av先锋影音| 欧美一区二区成人6969| 精品在线观看视频| 欧美中文字幕一区| 日韩精品电影一区亚洲| 免费在线成人| 亚洲自拍另类综合| 亚洲精品1区| 国产精品激情偷乱一区二区∴| 久久精品国产在热久久| 色综合激情五月| 午夜欧美一区二区三区在线播放| 成人一区二区三区视频| 8v天堂国产在线一区二区| 久久国内精品自在自线400部| 国模 一区 二区 三区| 久久久.com| 91蜜桃在线观看| 久久久亚洲国产美女国产盗摄| 天天色天天操综合| 国产欧美韩日| 一区二区三区波多野结衣在线观看| av午夜精品一区二区三区| 制服视频三区第一页精品| 九九热在线视频观看这里只有精品| 亚洲国产精品一区二区第四页av| 91精品黄色片免费大全| 国产精品亚洲人在线观看| 91精品国产一区二区三区香蕉| 亚洲一区二区精品视频| 国产精品试看| 午夜精品福利在线| 久久激情中文| 日本在线不卡视频一二三区| 日本高清视频一区二区| 欧美在线一二三四区| 日韩av在线播放中文字幕| 在线视频欧美精品| 国内精品第一页| 日韩一区二区三区av| 成人黄色av电影| 国产午夜精品一区二区三区四区| 国产成人在线色| 2020国产精品久久精品美国| 91色乱码一区二区三区| 欧美国产日本韩| 伊人成人在线视频| 亚洲精品中文字幕乱码三区| 国产精品一区二区三区四区五区| 国产精品亲子伦对白| 91久久精品一区二区别| 亚洲国产wwwccc36天堂| 久久精品国产清高在天天线| 三级影片在线观看欧美日韩一区二区| av成人国产| 日韩av一区二区三区| 制服丝袜日韩国产| av激情亚洲男人天堂| 国产精品天美传媒| 国产日韩一区二区三区在线播放| 中文字幕一区二区三区不卡在线| 99久久精品国产麻豆演员表| 亚洲国产成人一区二区三区| 亚洲先锋成人| 日韩国产欧美在线播放| 在线播放/欧美激情| 91性感美女视频| 亚洲欧洲成人自拍| 久久福利电影| 国产**成人网毛片九色| 国产精品久久久久久久久免费丝袜| 欧美精品不卡|