91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

BEE1038代做、代寫Python設(shè)計程序

時間:2024-03-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設(shè)計代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    东方欧美亚洲色图在线| 久久婷婷国产综合国色天香 | 亚洲在线观看免费视频| 一区二区国产精品| 91免费视频网| 精品亚洲porn| 久久99国产乱子伦精品免费| 亚洲美女区一区| 国产视频一区二区在线| 亚洲一区在线播放| 国产精品国产三级国产aⅴ中文| 欧美极品一区| 韩国亚洲精品| 欧美猛男超大videosgay| 欧美大片一区二区| 中文字幕亚洲区| 国产午夜久久久久| 奇米在线7777在线精品| 岛国精品一区二区| 99r国产精品| 99久久久久久| 99国产精品私拍| 欧美日韩精品一区二区三区蜜桃| 欧美女孩性生活视频| 亚洲精品亚洲人成人网| 蜜桃精品视频在线| 国产91对白在线观看九色| 91在线看国产| 国产精品呻吟| 欧美裸体bbwbbwbbw| 911国产精品| 亚洲成av人片在线| 国产精品1区2区| 伊人久久亚洲热| 26uuu久久天堂性欧美| 欧美一级一区| 亚洲欧洲精品一区二区| 欧美日韩在线一区二区| 久久久亚洲午夜电影| 一区二区三区电影在线播| 国产一区二区免费在线| 国产一区观看| 欧美美女一区二区三区| 中文字幕+乱码+中文字幕一区| 亚洲高清免费在线| 日日夜夜免费精品视频| 不卡一卡二卡三乱码免费网站| 激情综合激情| 日韩欧美一二三四区| 依依成人综合视频| eeuss影院一区二区三区| 久热这里只精品99re8久| 亚洲一区二区三区午夜| 久久尤物电影视频在线观看| 日日夜夜精品视频天天综合网| 99热在这里有精品免费| 色婷婷激情久久| 久久久国产精品麻豆| 老司机午夜精品| 成人动漫一区二区在线| 欧美一级视频| 亚洲天堂av一区| 成人免费高清在线| 欧美视频一区在线| 亚洲精品国产精华液| 麻豆久久久久久| 免费中文字幕日韩欧美| 欧美国产精品久久| 成人av网站大全| 在线观看日韩高清av| 一区二区三区在线观看动漫| 国产精品免费一区二区三区在线观看| 久久嫩草精品久久久精品一| 天天av天天翘天天综合网色鬼国产| 欧美精品在线一区| 中文字幕在线不卡一区二区三区| 国产成人欧美日韩在线电影| 91国偷自产一区二区三区观看| 亚洲欧美韩国综合色| 99精品欧美一区二区蜜桃免费| 欧美人妇做爰xxxⅹ性高电影 | 国产精品网站在线观看| 99久久99久久久精品齐齐 | 国产日韩欧美a| 亚洲成人在线| 国产精品 欧美精品| 一本色道久久综合亚洲精品高清 | 粗大黑人巨茎大战欧美成人| 欧美色图在线观看| 懂色av中文一区二区三区| 欧美日韩精品一区二区三区| 蜜臀av一区二区三区| 美女图片一区二区| 国产一区二区视频在线| 777xxx欧美| 国产91精品入口| 欧洲视频一区二区| 国产suv一区二区三区88区| 欧美综合一区二区| 久久精品国产精品亚洲红杏| 在线亚洲一区观看| 免费久久99精品国产| 蜜桃av综合| 免费成人美女在线观看.| 日本乱码高清不卡字幕| 久久9热精品视频| 久久久久久综合| 欧美日韩另类综合| 亚洲美女屁股眼交3| 国产成人精品影视| 中文字幕一区二| 色综合一区二区| 国产精品卡一卡二卡三| 欧美做爰猛烈大尺度电影无法无天| 轻轻草成人在线| 欧美日韩精品系列| 成人国产免费视频| 欧美第一区第二区| 97成人超碰视| 精品福利视频一区二区三区| 午夜国产精品视频| 免费不卡在线观看| 综合中文字幕亚洲| 91精品国产品国语在线不卡| 激情成人综合| 国产suv精品一区二区883| 亚洲图片一区二区| 久久精品视频在线免费观看| 欧美优质美女网站| 影音先锋一区| 成人v精品蜜桃久久一区| 亚洲午夜久久久久| 久久久久久一二三区| 色哟哟一区二区在线观看| 欧美日韩一区二区三区四区在线观看| 五月天亚洲婷婷| 国产午夜亚洲精品羞羞网站| 欧洲生活片亚洲生活在线观看| 亚洲精品一级| 91看片淫黄大片一级| 激情久久五月天| 日韩电影免费在线看| 中文字幕一区二区三区色视频 | 在线观看日韩毛片| 免费h精品视频在线播放| 国产91丝袜在线18| 奇米精品一区二区三区在线观看| 欧美午夜在线观看| 久久精品人人| 亚洲国产精品久久久久婷婷老年| 免费日韩伦理电影| 国产精品美女www爽爽爽| 欧美va亚洲va| 狂野欧美性猛交xxxx巴西| 欧美人与禽性xxxxx杂性| 精品一区二区三区欧美| 亚洲国产视频一区| 日本一区二区三区免费乱视频| 韩国一区二区三区在线观看 | 亚洲欧美电影在线观看| 在线电影一区| 国产电影精品久久禁18| 中文一区二区完整视频在线观看| 精品国产一区二区精华| 欧美中文字幕| 在线看片日韩| 日韩vs国产vs欧美| 欧美一级艳片视频免费观看| 欧美日韩在线播放三区四区| 亚洲香蕉视频| 成人一区二区三区| 琪琪一区二区三区| 精品成人一区二区| 欧美成人国产一区二区| 色88888久久久久久影院按摩 | 亚洲全部视频| eeuss影院一区二区三区| 老色鬼精品视频在线观看播放| 爽好久久久欧美精品| 日韩美女啊v在线免费观看| 日韩精品一区在线| 欧美体内she精高潮| 99精品桃花视频在线观看| av在线不卡免费看| 久久av中文字幕片| 麻豆视频观看网址久久| 亚洲成人一区在线| 亚洲美女视频一区| 亚洲四区在线观看| 欧美国产1区2区| 久久久亚洲精品一区二区三区| 老司机久久99久久精品播放免费| 欧洲一区二区三区免费视频| 美女亚洲精品| 亚洲综合欧美| 亚洲欧美日韩另类精品一区二区三区 | 成人性色生活片免费看爆迷你毛片| 成人激情免费电影网址| 欧美系列在线观看| 欧美精品一二三|