91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INAF U8145、代做c++,Java程序語言

時間:2024-04-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



SIPA INAF U8145
Spring 2024
Problem Set 3: Poverty and Inequality in Guatemala
Due Fri. April 5, 11:59pm, uploaded in a single pdf file on Courseworks
In this exercise, you will conduct an assessment of poverty and inequality in Guatemala. The data come from the
Encuesta de Condiciones de Vita (ENCOVI) 2000, collected by the Instituto Nacional de Estadistica (INE), the
national statistical institute of Guatemala, with assistance from the World Bank’s Living Standards Measurement
Study (LSMS). Information on this and other LSMS surveys are on the World Bank’s website at
http://www.worldbank.org/lsms. These data were used in the World Bank’s official poverty assessment for
Guatemala in 2003, available here.
Two poverty lines have been calculated for Guatemala using these ENCOVI 2000 data. The first is an extreme
poverty line, defined as the annual cost of purchasing the minimum daily caloric requirement of 2, 172 calories.
By this definition, the extreme poverty line is 1,912 Quetzals (Q), or approximately I$649 (PPP conversion), per
person per year. The second is a full poverty line, defined as the extreme poverty line plus an allowance for nonfood items, where the allowance is calculated from the average non-food budget share of households whose
calorie consumption is approximately the minimum daily requirement. (In other words, the full poverty line is the
average per-capita expenditures of households whose food per-capita food consumption is approximately at the
minimum.) By this definition, the full poverty line is 4,319 Q, or I$1,467.
Note on sampling design: the ENCOVI sample was not a random sample of the entire population. First, clusters
(or “strata”) were defined, and then households were sampled within each cluster. Given the sampling design, the
analysis should technically be carried out with different weights for different observations. Stata has a special set
of commands to do this sort of weighting (svymean, svytest, svytab etc.) But for the purpose of this exercise, we
will ignore the fact that the sample was stratified, and assign equal weight for all observations.1 As a result, your
answers will not be the same as in the World Bank’s poverty assessment, and will in some cases be unreliable.
1. Get the data. From the course website, download the dataset ps3.dta, which contains a subset of the variables
available in the ENCOVI 2000. Variable descriptions are contained in ps3vardesc.txt.
2. Start a new do file. My suggestion is that you begin again from the starter Stata program for Problem Set 1 (or
from your own code for Problem Set 1), keep the first set of commands (the “housekeeping” section) changing
the name of the log file, delete the rest, and save the do file under a new name.
3. Open the dataset in Stata (“use ps3.dta”), run the “describe” command, and check that you have 7,230
observations on the variables in ps3vardesc.txt.
4. Calculate the income rank for each household in the dataset (egen incrank = rank(incomepc)). Graph the
poverty profile. Include horizontal lines corresponding to the full poverty line and the extreme poverty line.
(Hint: you may want to create new variables equal to the full and extreme poverty lines.) When drawing the
poverty profile, only include households up to the 95th percentile in income per capita on the graph. (That is,
leave the top 5% of households off the graph.) Eliminating the highest-income household in this way will allow
you to use a sensible scale for the graph, and you will be able to see better what is happening at lower income
levels.
5. Using the full poverty line and the consumption per capita variable, calculate the poverty measures P0, P1, P2.
(Note: to sum a variable over all observations, use the command “egen newvar = total(oldvar);”.)
6. Using the extreme poverty line and the consumption per capita variable, again calculate P0, P1, and P2.
1 In all parts, you should treat each household as one observation. That is, do not try to adjust for the fact that
some households are larger than others. You will thus be calculating poverty statistics for households, using
per-capita consumption within the household as an indicator of the well-being of the household as a whole.
7. Using the full poverty line and the consumption per capita variable, calculate P2 separately for urban and rural
households.
8. Using the full poverty line and the consumption per capita variable, calculate P2 separately for indigenous and
non-indigenous households.
9. Using the full poverty line and the consumption per capita variable, calculate P2 separately for each region.
(Three bonus points for doing this in a “while” loop in Stata, like the one you used in Problem Set 1.)
10. Using one of your comparisons from parts 7-9, compute the contribution that each subgroup makes to
overall poverty. Note that if P2 is the poverty measure for the entire population (of households or of individuals),
and P2 j and sj are the poverty measure and population share of sub-group j of the population, then the
contribution of each sub-group to overall poverty can be written: sj*P2j/P2.
11. Summarize your results for parts 4-10 in a paragraph, noting which calculations you find particularly
interesting or important and why.
12. In many cases, detailed consumption or income data is not available, or is available only for a subset of
households, and targeting of anti-poverty programs must rely on poverty indices based on a few easy-toobserve correlates of poverty. Suppose that in addition to the ENCOVI survey, Guatemala has a population
census with data on all households, but suppose also that the census contains no information on per capita
consumption and only contains information on the following variables: urban, indig, spanish, n0_6, n7_24,
n25_59, n60_plus, hhhfemal, hhhage, ed_1_5, ed_6, ed_7_10, ed_11, ed_m11, and dummies for each region.
(In Stata, a convenient command to create dummy variables for each region is “xi i.region;”.) Calculate a
“consumption index” using the ENCOVI by (a) regressing log per-capita consumption on the variables
available in the population census, and (b) recovering the predicted values (command: predict), (c) converting
from log to level using the “exp( )” function in Stata. These predicted values are your consumption index. Note
that an analogous consumption index could be calculated for all households in the population census, using the
coefficient estimates from this regression using the ENCOVI data. Explain how.
13. Calculate P2 using your index (using the full poverty line) and compare to the value of P2 you calculated in
question 5.
14. Using the per-capita income variable, calculate the Gini coefficient for households (assuming that each
household enters with equal weight.) Some notes: (1) Your bins will be 1/N wide, where N is the number of
households. (2) The value of the Gini coefficient you calculate will not be equal to the actual Gini coefficient for
Guatemala, because of the weighting issue described above. (3) To generate a cumulative sum of a variable in Stata,
use the syntax “gen newvar = sum(oldvar);”. Try it out. (4) If you are interested (although it is not strictly
necessary in this case) you can create a difference between the value of a variable in one observation and the value
of the same variable in a previous observation in Stata, use the command “gen xdiff = x - x[_n-1];”. Be careful
about how the data are sorted when you do this.
What to turn in: In your write-up, you should report for each part any calculations you made, as well as written
answers to any questions. Remember that you are welcome to work in groups but you must do your write-up on
your own, and note whom you worked with. You should also attach a print-out of your Stata code.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做RISC-V、C/C++編程設計代寫
  • 下一篇:菲律賓買房的理由是什么 菲律賓買房的選擇
  • ·代寫ECON 8820、代做c++,Java程序語言
  • ·代寫MISM 6210、Python/java程序語言代做
  • ·CS101 編程代寫、代做 java程序語言
  • ·代寫DTS203TC、C++,Java程序語言代做
  • ·代做Biological Neural Computation、Python/Java程序語言代寫
  • ·program代做、Java程序語言代寫
  • ·CS 2210編程代寫、Java程序語言代做
  • ·代寫159.251編程、代做Java程序語言
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    欧美韩国日本一区| 国产成人一级电影| 亚洲精品国产视频| 国产精品天干天干在线综合| 久久这里都是精品| 精品国产乱码久久久久久夜甘婷婷| 欧美人狂配大交3d怪物一区| 欧美色手机在线观看| 欧美视频一二三区| 欧美日韩免费观看一区三区| 欧美体内she精高潮| 欧美日韩国产在线观看| 欧美精品 国产精品| 欧美一区二区高清| 久久久蜜桃精品| 国产精品另类一区| 伊人婷婷欧美激情| 亚洲第一搞黄网站| 蜜桃视频在线观看一区二区| 日本免费新一区视频| 久久se精品一区二区| 国产老女人精品毛片久久| 成人性生交大片免费看视频在线 | 国产女主播视频一区二区| 国产精品久久一卡二卡| 亚洲综合色丁香婷婷六月图片| 午夜电影网一区| 精东粉嫩av免费一区二区三区| 国产成人免费视频| 午夜精品短视频| 欧美一进一出视频| 91精品福利在线一区二区三区| 久久影院电视剧免费观看| 亚洲婷婷综合色高清在线| 免费精品99久久国产综合精品| 国产在线不卡一卡二卡三卡四卡| 成人免费毛片片v| 亚洲国产精品毛片| 在线免费不卡电影| 国产香蕉久久精品综合网| 亚洲天堂精品在线观看| 日本成人在线视频网站| 成人app在线观看| 中文久久精品| 日韩欧美一区在线观看| 亚洲天堂2016| 国产呦萝稀缺另类资源| 欧美日韩国产综合视频在线| 久久国产精品久久精品国产 | 日韩精品成人一区二区三区| 国产一区二区三区免费在线观看| 欧美日韩亚洲一区在线观看| 一本久道中文字幕精品亚洲嫩| 日韩欧美久久一区| 一区二区三区国产| 91香蕉国产在线观看软件| 久久精品中文字幕一区二区三区| 久久久久久电影| 免费高清在线视频一区·| 欧美69wwwcom| 69成人精品免费视频| 亚洲激情第一区| av在线播放不卡| 欧美日韩一区二区电影| 亚洲色图欧洲色图婷婷| 国产suv精品一区二区三区| 国产久一道中文一区| 久久久久久久免费视频了| 麻豆成人av在线| 国产精品日本| 欧美激情综合五月色丁香| 国产一区二区三区四区五区入口| 亚洲视频播放| 国产精品免费网站在线观看| 国产馆精品极品| 在线观看成人小视频| 亚洲男人的天堂av| 91美女精品福利| 欧美电视剧免费全集观看| 男人的天堂久久精品| 日韩视频一区| 亚洲视频资源在线| 欧美激情日韩| 久久女同精品一区二区| 国产黄人亚洲片| 欧美精三区欧美精三区| 午夜精品福利一区二区蜜股av| 亚洲午夜精品久久久久久app| 精品福利视频一区二区三区| 国产另类ts人妖一区二区| 91福利视频久久久久| 亚洲图片欧美视频| 翔田千里一区二区| 亚洲国产欧美在线| 国产日韩欧美亚洲一区| 中文字幕一区二区三中文字幕| 91免费国产在线| 日韩亚洲电影在线| 亚洲午夜私人影院| 色综合天天天天做夜夜夜夜做| 欧美日韩免费一区二区三区 | 免费的成人av| 亚洲精品在线观看免费| 精品国产成人在线影院 | 亚洲一区二区三区在线观看视频| 久久久久久亚洲综合影院红桃| 麻豆专区一区二区三区四区五区| 在线日本高清免费不卡| 欧美电视剧在线观看完整版| 日本成人中文字幕| 亚洲乱码久久| 久久影院视频免费| 国产美女视频一区| 一本久久a久久免费精品不卡| 亚洲视频资源在线| 99精品国产一区二区三区不卡| 欧美午夜精品久久久久久超碰| 一区二区三区中文字幕电影| 欧美91大片| 88在线观看91蜜桃国自产| 午夜伦欧美伦电影理论片| 伊人久久大香线蕉综合热线| 精品国产91九色蝌蚪| 国产精品一区二区久久精品爱涩 | 欧美一区二区二区| 久久99国产精品尤物| 六月天综合网| 亚洲精品视频在线观看网站| 午夜精品久久99蜜桃的功能介绍| 日韩欧美国产一二三区| 久久国产精品露脸对白| 久久另类ts人妖一区二区| 亚洲精品国产a久久久久久| 好吊色欧美一区二区三区四区 | 毛片不卡一区二区| 色综合久久88色综合天天免费| 一区二区三区欧美激情| 国产一区二区三区无遮挡| 久久久久久久综合日本| 成人黄色av网站在线| 欧美一区二区性放荡片| 精品一区二区三区免费| 欧洲一区在线电影| 日韩高清国产一区在线| 六月婷婷一区| 丝袜a∨在线一区二区三区不卡| 亚洲一区二区免费看| 亚洲另类色综合网站| 136国产福利精品导航网址| 亚洲国产精品高清| 国产精品二区二区三区| 欧美国产日韩一二三区| 欧美日韩影院| 国产精品视频你懂的| 国产一区二区中文| 一区视频在线播放| 伊人久久大香线蕉综合热线 | 成人免费在线播放视频| 欧美调教femdomvk| 亚洲欧洲一区二区天堂久久| 奇米色一区二区| 一色桃子久久精品亚洲| 日韩欧美成人激情| 国产一区二区三区成人欧美日韩在线观看| 国产一区二区不卡在线| 亚洲午夜影视影院在线观看| 2020国产精品自拍| 国产人成一区二区三区影院| 欧美综合久久久| 久久99国产精品免费| 在线播放国产精品二区一二区四区| 国产在线国偷精品产拍免费yy| 日韩一区二区在线播放| 成人免费毛片app| 国产色产综合产在线视频| 欧美三级网页| 一区二区三区精品在线| 久久精品毛片| 精品一区二区精品| 日韩欧美一区二区不卡| 国产精品久久久免费| 欧美精品一区二区三区久久久竹菊| 国产精品一区在线观看你懂的| 五月综合激情日本mⅴ| 亚洲色图色小说| 中文字幕亚洲在| 国产亚洲精品超碰| 精品国产凹凸成av人导航| 欧美一区二区三区在| 欧美色男人天堂| 91久久一区二区| 免费亚洲一区| 久久午夜电影| 久久www成人_看片免费不卡| 亚洲激情偷拍| 日韩午夜av| 国产精品久久久一区二区| 亚洲久久一区| 国产精品嫩草99av在线| 国产日韩欧美精品|