91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CSCI 4210 — Operating Systems

時間:2024-08-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSCI 4210  Operating Systems

Simulation Project Part II (document version 1.0)

Processes and CPU Scheduling

Overview

•  This assignment is due in Submitty by 11:59PM EST on Thursday, August 15, 2024

•  This project is to be completed either individually or in a team of at most three students; as with Project Part I, form your team within the Submitty gradeable, but do not submit any code until we announce that auto-grading is available

•  NEW: If you worked on a team for PartI, feel free to change your team for Part II; all code is reusable from Part I even if you change teams

•  Beyond your team (or yourself if working alone), do not share your code; however, feel free to discuss the project content and your findings with one another on our Discussion Forum

•  To appease Submitty, you must use one of the following programming languages:  C, C++, or Python (be sure you choose only one language for your entire implementation)

• You will have ve penalty-free submissions on Submitty, after which points will slowly be deducted, e.g., -1 on submission #6, etc.

• You can use at most three late days on this assignment; in such cases, each team member must use a late day

• You will have at least three days before the due date to submit your code to Submitty; if the auto-grading is not available three days before the due date, the due date will be 11:59PM EDT three days after auto-grading becomes available

•  NEW: Given that your simulation results might not entirely match the expected output on Submitty, we will cap your auto-graded grade at 50  points even though there will be more than 50 auto-graded points per language available in Submitty

• All submitted code must successfully compile and run on Submitty, which currently uses Ubuntu v22.04.4 LTS

• If you use C or C++, your program must successfully compile via gcc org++ with no warning messages when the -Wall  (i.e., warn all) compiler option is used; we will also use -Werror, which will treat all warnings as critical errors; the -lm flag will also be included; the gcc/g++ compiler is currently version 11.4.0 (Ubuntu  11.4.0-1ubuntu1~22.04)

•  For source file naming conventions, be sure to use * .c for C and * .cpp for C++; in either case, you can also include * .h files

• For Python, you must use python3, which is currently Python 3.10.12; be sure to name your main Python file project .py; also be sure no warning messages or extraneous output occur during interpretation

•  Please “flatten” all directory structures to a single directory of source files

•  Note that you can use square brackets in your code

Project specifications

For Part II of our simulation project, given the set of processes pseudo-randomly generated in Part I, you will implement a series of simulations of a running operating system. The overall focus will again be on processes, assumed to be resident in memory, waiting to use the CPU. Memory and the I/O subsystem will not be covered in depth in either part of this project.

Conceptual design  (from Part I)

process is defined as a program in execution.  For this assignment, processes are in one of the following three states, corresponding to the picture shown further below.

•  RUNNING: actively using the CPU and executing instructions

•  READY: ready to use the CPU, i.e., ready to execute a CPU burst

• WAITING: blocked on I/O or some other event

RUNNING                      READY                                   WAITING  (on  I/O) STATE                     STATE                                     STATE

+-----+                                                             +---------------------+

|           |          +-------------------+          |                                          |

|  CPU   |   <==  |         |         |         |         |              |         I/O  Subsystem          |

|           |          +-------------------+          |                                          |

+-----+           <<<  queue  <<<<<<<<<           +---------------------+

Processes in the READY  state reside in a queue called the ready queue.  This queue is ordered based on a configurable CPU scheduling algorithm.  You will implement specific CPU scheduling algorithms in Part II of this project.

All implemented algorithms (in Part II) will be simulated for the same  set  of processes, which will therefore support a comparative analysis of results. In Part I, the focus is on generating useful sets of processes via pseudo-random number generators.

Back to the conceptual model, when a process is in the READY state and reaches the front of the queue, once the CPU is free to accept the next process, the given process enters the RUNNING state and starts executing its CPU burst.

After each CPU burst is completed, if the process does not terminate, the process enters the WAITING  state, waiting for an I/O operation to complete (e.g., waiting for data to be read in from a file).  When the I/O operation completes, depending on the scheduling algorithm, the process either (1) returns to the READY  state and is added to the ready queue or (2) preempts the currently running process and switches into the RUNNING state.

Note that preemptions occur only for certain algorithms.

Algorithms — (Part II)

The four algorithms that you must simulate are first-come-first-served (FCFS); shortest job first (SJF); shortest remaining time (SRT); and round robin (RR). When you run your program, all four algorithms are to be simulated in succession with the same initial set of processes.

Each algorithm is summarized below.

First-come-first-served  (FCFS)

The FCFS algorithm is a non-preemptive algorithm in which processes simply line up in the ready queue, waiting to use the CPU. This is your baseline algorithm.

Shortest job first  (SJF)

In SJF, processes are stored in the ready queue in order of priority based on their anticipated CPU burst times.  More specifically, the process with the shortest predicted CPU burst time will be selected as the next process executed by the CPU. SJF is non-preemptive.

Shortest remaining time  (SRT)

The SRT algorithm is a preemptive version of the SJF algorithm. In SRT, when a process arrives, if it has a predicted CPU burst time that is less than the remaining predicted time of the currently running process, a preemption occurs.  When such a preemption occurs, the currently running process is added to the ready queue based on priority, i.e., based on its remaining predicted CPU burst time.

Round robin  (RR)

The RR algorithm is essentially the FCFS algorithm with time slice t slice.  Each process is given t slice  amount of time to complete its CPU burst. If the time slice expires, the process is preempted and added to the end of the ready queue.

If a process completes its CPU burst before a time slice expiration, the next process on the ready queue is context-switched in to use the CPU.

For your simulation, if a preemption occurs and there are no other processes on the ready queue, do not perform a context switch. For example, given process G is using the CPU and the ready queue is empty, if process G is preempted by a time slice expiration, do not context-switch process G back to the empty queue; instead, keep process G running with the CPU and do not count this as a context switch. In other words, when the time slice expires, check the queue to determine if a context switch should occur.

 

Simulation configuration  (extended from Part I)

The key to designing a useful simulation is to provide a number of configurable parameters. This allows you to simulate and tune for a variety of scenarios, e.g., a large number of CPU-bound processes, difering average process interarrival times, multiple CPUs, etc.

Define the simulation parameters shown below as tunable constants within your code, all of which will be given as command-line arguments. In Part II of the project, additional parameters will be added.

•  *(argv+1):  Define n as the number of processes to simulate.  Process IDs are assigned a two-character code consisting of an uppercase letter from A to Z followed by a number from

0 to 9. Processes are assigned in order A0, A1, A2, . . ., A9, B0, B1, . . ., Z9.

•  *(argv+2): Definen cpu as the number of processes that are CPU-bound. For this project, we will classify processes as I/O-bound or CPU-bound.  The n cpu   CPU-bound processes, when generated, will have CPU burst times that are longer by a factor of 4 and will have I/O burst times that are shorter by a factor of 8.

•  *(argv+3):  We will use a pseudo-random number generator to determine the interarrival times  of CPU bursts.  This command-line argument, i.e. seed, serves as the seed for the pseudo-random number sequence. To ensure predictability and repeatability, use srand48() with this given seed before simulating each  scheduling algorithm and drand48() to obtain the next value in the range [0.0, 1.0). Since Python does not have these functions, implement an equivalent 48-bit linear congruential generator, as described in the man page for these functions in C.

•  *(argv+4): To determine interarrival times, we will use an exponential distribution, as illus- trated in the exp-random .c example. This command-line argument is parameter λ; remember

that λ/1 will be the average random value generated, e.g., if λ = 0.01, then the average should be appoximately 100.

In the exp-random .c example, use the formula shown in the code, i.e., λ/− ln r.

•  *(argv+5):  For the exponential distribution, this command-line argument represents the upper bound for valid pseudo-random numbers.  This threshold is used to avoid values far down the long tail of the exponential distribution.  As an example, if this is set to 3000, all generated values above 3000 should be skipped. For cases in which this value is used in the ceiling function (see the next page), be sure the ceiling is still valid according to this upper bound.

•  *(argv+6): Define tcs  as the time, in milliseconds, that it takes to perform a context switch. Specifically, the first half of the context switch time (i.e., 2/tcs) is the time required to remove the given process from the CPU; the second half of the context switch time is the time required to bring the next process in to use the CPU. Therefore, require tcs  to be a positive even integer.

 

•  *(argv+7): For the SJF and SRT algorithms, since we do not know the actual CPU burst times beforehand, we will rely on estimates determined via exponential averaging.  As such, this command-line argument is the constant Q, which must be a numeric floating-point value in the range [0; 1].

Note that the initial guess for each process is τ0  = λ/1 .

Also, when calculating τ values, use the “ceiling” function for all calculations.

•  *(argv+8): For the RR algorithm, define the time slice value,t slice, measured in milliseconds. Require t slice  to be a positive integer.

Pseudo-random numbers and predictability  (from Part I)

A key aspect of this assignment is to compare the results of each of the simulated algorithms with one another given the same initial conditions, i.e., the same initial set of processes.

To ensure each CPU scheduling algorithm runs with the same set of processes, carefully follow the algorithm below to create the set of processes.

For each of the n processes, in order A0 through Z9, perform the steps below, with CPU-bound processes generated first. Note that all generated values are integers.

Define your exponential distribution pseudo-random number generation function as next_exp() (or another similar name).

1. Identify the initial process arrival time as the “floor” of the next random number in the sequence given by next_exp(); note that you could therefore have a zero arrival time

2. Identify the number of CPU bursts for the given process as the “ceiling” of the next random number generated from the uniform distribution obtained via drand48() multiplied by **; this should obtain a random integer in the inclusive range [1; **]

3. For each  of these CPU bursts, identify the CPU burst time and the I/O burst time as the “ceiling” of the next two random numbers in the sequence given by next_exp(); multiply the I/O burst time by 8 such that I/O burst time is close to an order of magnitude longer than CPU burst time; as noted above, for CPU-bound processes, multiply the CPU burst time by 4 and divide the I/O burst time by 8 (i.e., do not bother multiplying the original I/O burst time by 8 in this case); for the last CPU burst, do not generate an I/O burst time (since each process ends with a final CPU burst)

Simulation specifics  (Part II)

Your simulator keeps track of elapsed time t (measured in milliseconds), which is initially zero for each scheduling algorithm.  As your simulation proceeds, t  advances to each “interesting” event that occurs, displaying a specific line of output that describes each event.

The “interesting” events are:

•  Start of simulation for a specific algorithm

•  Process arrival (i.e., initially and at each I/O completion)

•  Process starts using the CPU

•  Process finishes using the CPU (i.e., completes a CPU burst)

•  Process has its τ value recalculated (i.e., after a CPU burst completion)

•  Process preemption (SRT and RR only)

•  Process starts an I/O burst

•  Process finishes an I/O burst

•  Process terminates by finishing its last CPU burst

• End of simulation for a specific algorithm

Note that the “process arrival” event occurs each time a process arrives, which includes both the initial arrival time and when a process completes an I/O burst. In other words, processes “arrive” within the subsystem that consists only of the CPU and the ready queue.

The “process preemption” event occurs each time a process is preempted.  When a preemption occurs, a context switch occurs, except when the ready queue is empty for the RR algorithm.

After you simulate each scheduling algorithm, you must reset your simulation back to the initial set of processes and set your elapsed time back to zero.

Note that there may be times during your simulation in which the simulated CPU is idle because no processes have arrived yet or all processes are busy performing I/O. Also, your simulation ends when all processes terminate.

If diferent types of events occur at the same time, simulate these events in the following order:

(a) CPU burst completion; (b) process starts using the CPU; (c) I/O burst completions; and

(d) new process arrivals.

Further, any “ties” that occur within  one of these categories are to be broken using process ID order.  As an example, if processes G1  and S9 happen to both complete I/O bursts at the same time, process G1 wins this “tie” (because G1 is lexicographically before S9) and is therefore added to the ready queue before process S9.

Be sure you do not implement any additional logic for the I/O subsystem.  In other words, there are no specific I/O queues to implement.

Measurements  (from Part I)

There are a number of measurements you will want to track in your simulation. For each algorithm, you will count the number of preemptions and the number of context switches that occur. Further, you will measure CPU utilization by tracking CPU usage and CPU idle time.

Specifically, for each  CPU  burst, you will track CPU burst time (given), turnaround time, and wait time.

CPU burst time

CPU burst times are randomly generated for each process that you simulate via the above algorithm. CPU burst time is defined as the amount of time a process is actually using the CPU. Therefore, this measure does not include context switch times.

Turnaround time

Turnaround times are to be measured for each process that you simulate.  Turnaround time is defined as the end-to-end time a process spends in executing a single  CPU  burst.

More specifically, this is measured from process arrival time through to when the CPU burst is completed and the process is switched out of the CPU. Therefore, this measure includes the second half of the initial context switch in and the first half of the final context switch out, as well as any other context switches that occur while the CPU burst is being completed (i.e., due to preemptions).

Wait time

Wait times are to be measured for each CPU burst. Wait time is defined as the amount of time a process spends waiting to use the CPU, which equates to the amount of time the given process is actually in the ready queue. Therefore, this measure does not include context switch times that the given process experiences, i.e., only measure the time the given process is actually in the ready queue.

CPU utilization

Calculate CPU utilization by tracking how much time the CPU is actively running CPU bursts versus total elapsed simulation time.

 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP501 ICT Fundamentals
  • 下一篇:BISM1201代做、代寫Python/Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    国产精品18久久久久久久久| 亚洲激情不卡| 国产福利精品一区二区| 精品在线播放免费| 欧美 日韩 国产精品免费观看| 91性感美女视频| 激情小说亚洲一区| 日本免费在线视频不卡一不卡二| 亚洲欧美成人一区二区三区| 久久久噜噜噜久久狠狠50岁| 99综合电影在线视频| 午夜av一区二区| 亚洲免费观看在线视频| 亚洲免费视频中文字幕| 亚洲一区二区三区四区不卡| 三级欧美韩日大片在线看| 青青草97国产精品免费观看无弹窗版| 亚洲va在线va天堂| 国产一区二三区好的| 成人h动漫精品一区二| 欧美激情第10页| 在线播放不卡| 欧美亚州韩日在线看免费版国语版| 欧美日韩国产高清一区二区| 亚洲精品在线观看网站| 亚洲精品日韩一| 国产精品一区二区无线| 欧美日韩蜜桃| 在线观看精品一区| 久久久不卡网国产精品二区| 亚洲成a人片在线观看中文| 国产精品一区二区黑丝| 一区二区国产在线观看| 欧美一区二区播放| 亚洲精品国产无天堂网2021| 蜜臀久久久久久久| 欧美另类视频在线| 欧美系列一区二区| 国产精品久久三区| 美国毛片一区二区三区| 国内激情久久| 日韩一区二区高清| 亚洲动漫第一页| www.欧美日韩| 欧美在线|欧美| 一区二区高清视频在线观看| 99亚偷拍自图区亚洲| 欧美亚洲精品一区| 夜夜嗨av一区二区三区| 欧美在线视频一区二区三区| 欧美日韩国产三级| 亚洲第一成年网| 亚洲精品社区| 中文字幕 久热精品 视频在线| 国产成人在线电影| 欧美在线观看一区二区| 亚洲一区二区四区蜜桃| 欧美另类视频| 国产精品美女www爽爽爽| 成人毛片在线观看| 91精品国产欧美一区二区成人| 日韩综合在线视频| 久久久www免费人成黑人精品| 国产精品嫩草久久久久| 欧美日本韩国一区二区三区| 精品乱人伦小说| 成+人+亚洲+综合天堂| 欧美变态凌虐bdsm| 成人深夜在线观看| 久久无码av三级| 91麻豆.com| 中文字幕欧美国产| 激情文学一区| 亚洲永久免费av| 在线视频国内一区二区| 韩日欧美一区二区三区| 91精品国产入口| 色综合天天综合狠狠| 国产日韩成人精品| 亚洲美女一区| 日韩av成人高清| 欧美一级精品大片| 91丨九色porny丨蝌蚪| 亚洲人午夜精品天堂一二香蕉| 国产精品久久久久久久久久直播| 婷婷久久综合九色综合伊人色| 久久国产直播| 国产很黄免费观看久久| 欧美激情一区二区三区四区| 男人的天堂亚洲在线| 国产成人在线电影| 久久亚洲视频| 蜜乳av一区二区三区| 国产精品女人毛片| 精品日产卡一卡二卡麻豆| 91福利社在线观看| 日韩亚洲在线| 欧美一区高清| 岛国精品一区二区| 久久99九九99精品| 五月综合激情日本mⅴ| 亚洲国产高清在线| 久久综合久色欧美综合狠狠| 欧洲生活片亚洲生活在线观看| 香港久久久电影| 亚洲精品一二| 亚洲激情一区| 亚洲国产欧美不卡在线观看| 欧美日韩a区| 国产综合网站| 亚洲国产高清一区| 伊人天天综合| 一区二区三区视频在线播放| 亚洲精品欧美| 一本久久a久久免费精品不卡| 亚洲一区日韩在线| 久久精品动漫| 91福利国产成人精品照片| 欧美综合天天夜夜久久| 欧美亚洲一区二区在线| 欧美日韩日本视频| 69堂精品视频| 久久精品免费在线观看| 成人免费在线视频观看| 午夜精品一区在线观看| 免费黄网站欧美| 不卡的av中国片| 亚洲视频福利| 色噜噜偷拍精品综合在线| 欧美日韩大陆一区二区| 欧美电影免费观看高清完整版在线 | 亚洲日本中文字幕区| 成人欧美一区二区三区小说| 亚洲男女一区二区三区| 一区二区三区欧美日| 亚洲成人免费视| 午夜精品久久久| 国产一区二区三区在线观看免费 | 青草av.久久免费一区| 视频一区二区三区入口| 精品亚洲国产成人av制服丝袜| 国产成人av一区二区| 欧美在线影院| 亚洲午夜激情在线| 色噜噜狠狠成人中文综合 | 粉嫩aⅴ一区二区三区四区五区| 91久久精品一区二区三区| 亚洲综合在线五月| 亚洲欧美日韩精品久久久| 亚洲三级久久久| 99re66热这里只有精品4| 国产精品成人免费在线| 日本丰满少妇一区二区三区| 日韩一区二区三免费高清| 中文字幕av资源一区| 久久超碰97中文字幕| 国产乱色国产精品免费视频| 国产综合自拍| 8x8x8国产精品| 亚洲黄色免费网站| 精品一区二区在线观看| 激情综合网址| 欧美久久久久久久久久| 最好看的中文字幕久久| 激情综合色播激情啊| 99精品国产在热久久| 欧美一区二区成人| 性欧美疯狂xxxxbbbb| 午夜激情一区| 欧美一区永久视频免费观看| 日本亚洲一区二区| 国产一级久久| 中文字幕亚洲一区二区av在线| 欧美激情综合色综合啪啪| 国产性天天综合网| 成人avav影音| 久久久另类综合| 亚洲欧美综合| 国产亚洲欧洲997久久综合| 日韩极品在线观看| 欧美一级视频| 亚洲国产综合视频在线观看| 在线观看成人av| 中文字幕制服丝袜成人av| 欧美精品二区| 久久嫩草精品久久久精品一| 成人福利电影精品一区二区在线观看 | 亚洲综合丁香婷婷六月香| 久久久久久亚洲综合| 欧美三级电影在线看| 免费精品视频| 91久久亚洲| 欧美激情91| 91理论电影在线观看| 国产精品全国免费观看高清| 99精品视频在线观看| 欧美精品一区二| 午夜久久久久| 中文字幕一区二区不卡 | 狠久久av成人天堂|