91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP 627代寫、代做Python設(shè)計程序
COMP 627代寫、代做Python設(shè)計程序

時間:2024-08-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代做COMP5216、代寫Java設(shè)計編程
  • 下一篇:代做QBUS3330、c++,Python編程設(shè)計代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    一区二区成人在线视频| 亚洲欧美日本视频在线观看| 一本大道久久精品懂色aⅴ| 国产精品素人一区二区| 成人黄色在线看| 亚洲一区二区四区| 午夜精品影院在线观看| 激情文学一区| 国产亚洲精品资源在线26u| 激情久久久久久久久久久久久久久久| 国产日韩欧美精品| 久久综合福利| 一区2区3区在线看| 久久字幕精品一区| 午夜欧美在线一二页| 乱人伦精品视频在线观看| 亚洲综合视频在线观看| 亚洲国产网站| 国产亚洲综合在线| 岛国av在线一区| 欧美一区二区三区视频免费播放| 日本一区二区视频在线观看| 久久99久久99| 精品1区2区3区| 国产乱一区二区| 日韩欧美你懂的| 成人午夜在线免费| 欧美三级韩国三级日本一级| 99精品国产视频| 精品精品国产高清一毛片一天堂| 国产白丝网站精品污在线入口| 91精品国产丝袜白色高跟鞋| 福利91精品一区二区三区| 一本大道久久a久久综合婷婷| 美腿丝袜亚洲色图| 国产精品免费在线| 久久精品无码一区二区三区| 欧美1区免费| 亚洲另类一区二区| 麻豆精品传媒视频| 韩国成人在线视频| 日韩你懂的电影在线观看| 99热在这里有精品免费| 91精品国产欧美一区二区成人| 久久人人九九| 三级久久三级久久| 精品少妇一区二区三区视频免付费| 欧美不卡在线| 亚洲一级二级三级| 欧美色视频在线| 麻豆精品久久精品色综合| 中文字幕成人在线观看| 免费看亚洲片| 国产传媒一区在线| 亚洲欧美电影院| 91成人免费在线视频| 国产成人99久久亚洲综合精品| 欧美性生活一区| 国产精品原创巨作av| 91精品国产欧美日韩| 99精品国产热久久91蜜凸| 欧美性视频一区二区三区| 亚洲电影成人| 精品亚洲免费视频| 国产精品天干天干在观线| 在线观看国产日韩| 欧美精品七区| 国产成人在线色| 亚洲欧美色图小说| 欧美色综合网站| 欧美日韩三区| 麻豆一区二区三区| 亚洲一区二区欧美| 精品国产一区二区在线观看| 影音欧美亚洲| 久久狠狠亚洲综合| 中文字幕一区二区三中文字幕| 亚洲精品社区| 韩国av一区二区三区| 精品国产一区二区国模嫣然| 99久久国产免费看| 久热成人在线视频| 欧美日本一区二区三区四区| 亚洲精品社区| av亚洲精华国产精华| 亚洲一区影音先锋| 亚洲国产高清aⅴ视频| 欧美日本高清视频在线观看| 久久不射2019中文字幕| 欧美精品xxxxbbbb| 亚洲成人精品影院| 福利视频网站一区二区三区| 亚洲人123区| 欧美日韩国产综合久久| 99久久婷婷国产| 日韩福利视频导航| 国产精品久久久久久久久快鸭| 欧美精品一卡两卡| 色欧美日韩亚洲| 国产欧美日韩综合一区在线观看 | 国内一区二区三区在线视频| 亚洲欧美一区二区三区孕妇| 亚洲国产一区二区三区高清| 日韩影视精彩在线| 26uuu精品一区二区| 日韩电影在线观看电影| 欧美视频一二三区| 99国产精品视频免费观看| 亚洲第一电影网| 日韩一区二区在线观看视频| 国精品一区二区三区| 久久精品国产99国产精品| 中文幕一区二区三区久久蜜桃| 亚洲欧美清纯在线制服| 成人做爰69片免费看网站| 亚洲最快最全在线视频| 精品国产乱码久久久久久蜜臀| 亚洲黄色免费| 豆国产96在线|亚洲| 午夜精品国产更新| 久久久www成人免费毛片麻豆| 欧美性猛片aaaaaaa做受| 亚洲高清不卡一区| 99久久精品免费| 成人高清在线视频| 高清视频一区二区| 99精品视频在线观看| 欧美日韩免费高清| 国产欧美短视频| 一本到一区二区三区| 欧美三级韩国三级日本三斤| 91.com视频| 国产欧美一区二区在线观看| 亚洲欧洲综合另类| 午夜精品在线看| 国产精品系列在线播放| 日韩一区在线播放| 国产视频一区二区在线观看| 日韩精品一区国产麻豆| 欧美一二区视频| 欧美+日本+国产+在线a∨观看| 欧美视频1区| 欧美自拍偷拍午夜视频| 91精品国产综合久久久久久久久久 | 午夜精品福利视频网站| 经典一区二区三区| 91在线国产观看| 鲁大师成人一区二区三区| 日韩一区二区免费视频| 中文字幕一区二区三区精华液| 日韩黄色片在线观看| 欧美一区二区| 91国产免费观看| 日本一区二区三区久久久久久久久不| 亚洲线精品一区二区三区| 成熟亚洲日本毛茸茸凸凹| 中文欧美日韩| 久久先锋影音av| 开心九九激情九九欧美日韩精美视频电影 | 99久久精品一区二区| 午夜精品在线看| 国产成人亚洲精品狼色在线| 99热在这里有精品免费| 亚洲调教视频在线观看| 国产农村妇女精品一区二区| 欧美在线观看视频一区二区| 精品国产网站在线观看| 亚洲免费观看高清完整版在线观看熊| 日韩三级精品电影久久久| 亚洲一区二区3| 国产精品地址| 久久夜色精品国产噜噜av| 韩国三级在线一区| 久久不射中文字幕| 亚洲乱码精品一二三四区日韩在线| 福利视频网站一区二区三区| 色噜噜狠狠成人网p站| 一区二区在线观看av| 国产综合网站| 国产欧美日韩三区| 成人av网站在线观看| 日韩一区二区精品在线观看| 精品无人码麻豆乱码1区2区| 国产一区 二区 三区一级| 亚洲欧美久久| 国产精品蜜臀在线观看| 粉嫩蜜臀av国产精品网站| 92国产精品观看| 久久亚洲精品国产精品紫薇| 99精品视频在线播放观看| 精品国产制服丝袜高跟| 久久综合九色综合欧美98| 日韩福利电影在线观看| 好吊日精品视频| 久久久久久久综合色一本| 国产精品亚洲一区二区三区在线| 老鸭窝毛片一区二区三区| 亚洲少妇中出一区| 91亚洲精品一区二区乱码| 日韩一区国产二区欧美三区|