91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫3007_7059 Artificial Intelligence 3007_7059
代寫3007_7059 Artificial Intelligence 3007_7059

時間:2024-09-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


Assignment 2: Artificial Intelligence (3007_7059 Combined)

Assignment 2

The dataset is available here

(https://myuni.adelaide.edu.au/courses/95211/files/1453***/download)

Part 1 Wine Quality Prediction with 1NN (K-d Tree)

Wine experts evaluate the quality of wine based on sensory data. We could also collect the features of wine from objective tests, thus the objective features could be used to predict the expert’s judgment, which is the quality rating of the wine. This could be formed as a supervised learning problem with the objective features as the data features and wine quality rating as the data labels.

In this assignment, we provide objective features obtained from physicochemical statistics for each white wine sample and its corresponding rating provided by wine experts. You are expected to implement the k-d tree (KDT) and use the training set to train your k-d tree, then provide wine quality prediction on the test set by searching the tree

Wine quality rating is measured in the range of 0-9. In our dataset, we only keep the samples for quality ratings 5, 6 and 7. The 11 objective features are listed as follows [1]:

f_acid : fixed acidity

v_acid : volatile acidity

c_acid : citric acid

res_sugar : residual sugar

chlorides : chlorides

fs_dioxide : free sulfur dioxide

ts_dioxide : total sulfur dioxide

density : density

pH : pH

sulphates : sulphates

alcohol : alcohol

Explanation of the Data.

train: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

 

sulphates

alcohol

quality

8.10

0.270

0.41

1.45

0.033

11.0

63.0

0.9**80

2.99

0.56

12.0

5

8.60

0.230

0.40

4.20

0.035

17.0

109.0

0.99**0

3.14

0.53

9.7

5

7.**

0.180

0.74

1.20

0.040

16.0

75.0

0.99200

3.18

0.63

10.8

5

8.30

0.420

0.62

19.25

0.040

41.0

172.0

1.00020

2.98

0.67

9.7

5

6.50

0.310

0.14

7.50

0.044

34.0

133.0

0.99550

3.22

0.50

9.5

5

test: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

pH

sulphates

alcohol

7.0

0.360

0.14

11.60

0.043

35.0

228.0

0.99770

3.13

0.51

8.**0000

6.3

0.270

0.18

7.70

0.048

45.0

186.0

0.99620

3.23

0.**

9.000000

7.2

0.2**

0.20

7.70

0.046

51.0

174.0

0.99582

3.16

0.52

9.500000

7.1

0.140

0.35

1.40

0.039

24.0

128.0

0.99212

2.97

0.68

10.400000

7.6

0.480

0.28

10.40

0.049

57.0

205.0

0.99748

3.24

0.45

9.300000

1.1 1NN (K-d Tree)

From the given training data, our goal is to learn a function that can predict the wine quality rating of a wine sample, based on the objective features. In this assignment, the predictor function will be constructed as a k-d tree. Since the attributes (objective features) are continuously valued, you shall apply the k-d tree algorithm for continuous data, as outlined in Algorithms 1. It is the same as taught in the lecture. Once the tree is constructed, you will search the tree to find the **nearest neighbour of a query point and label the query point. Please refer to the search logic taught in the lecture to write your code for the 1NN search.

 

Algorithm 1 BuildKdTree(P, D) Require: A set of points P of M dimensions and current depth D. 1: if P is empty then 2: return null 3: else if P only has one data point then 4: Create new node node 5: node.d ← d 6: node.val ← val 7: node.point ← current point 8: return node 9: else 10: d ← D mod M 11: val ← Median value along dimension among points in P. 12: Create new node node. 13: node.d ← d 14: node.val ← val 15: node.point ← point at the median along dimension d 16: node.left ← BuildKdTree(points in P for which value at dimension d is less than or equal to val, D+1) 17: node.right ← BuildKdTree(points in P for which value at dimension d is greater than val, D+ 1) 18: return node 19: end if

Note: Sorting is not necessary in some cases depending on your implementation. Please figure out whether your code needs to sort the number first. Also, if you compute the median by yourself, when there’s an even number of points, say [1,2,3,4], the median is 2.5.

 

1.2 Deliverable

Write your k-d tree program in Python 3.6.9 in a file called nn_kdtree.py. Your program must be able to run as follows:

$ python nn_kdtree.py [train] [test] [dimension]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[dimension] is used to decide which dimension to start the comparison. (Algorithm 1)

Given the inputs, your program must construct a k-d tree (following the prescribed algorithms) using the training data, then predict the quality rating of each of the wine samples in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

1.3 Python Libraries

You are allowed to use the Python standard library to write your k-d tree learning program (see https://docs.python.org/3/library/(https://docs.python.org/3/library/) for the components that make up the Python v3.6.9 standard library). In addition to the standard library, you are allowed to use NumPy and Pandas. Note that the marking program will not be able to run your program to completion if other third-party libraries are used. You are NOT allowed to use implemented tree structures from any Python package, otherwise the mark will be set to 0.

1.4 Submission

You must submit your program files on Gradescope. Please use the course code NPD6JD to enroll in the course. Instructions on accessing Gradescope and submitting assignments are provided at https://help.gradescope.com/article/5d3ifaeqi4-student-canvas (https://help.gradescope.com/article/5d3ifaeqi4-student-canvas) .

For undergraduates, please submit your k-d tree program (nn_kdtree.py) to Assignment 2 - UG.

1.5 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

 

1.6 Debugging Suggestions

Step-by-step debugging by checking intermediate values/results will help you to identify the problems of your code. This function is enabled by most of the Python IDE. If not in your case, you could also print the intermediate values out. You could use sample data or create data in the same format for debugging

1.7 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 15% (undergrads) or 12% (postgrads) of the overall course mark. For undergraduates, bonus marks of 3% will be awarded if Section 2 is completed correctly.

There will be no further manual inspection/grading of your program to award marks based on coding style, commenting, or “amount” of code written.

1.8 Using other source code

You may not use other source code for this assignment. All submitted code must be your own work written from scratch. Only by writing the solution yourself will you fully understand the concept.

1.9 Due date and late submission policy

This assignment is due by 11:59 pm Friday 3 May 2024. If your submission is late, the maximum mark you can obtain will be reduced by 25% per day (or part thereof) past the due date or any extension you are granted.

Part 2 Wine Quality Prediction with Random Forest

For postgraduate students, completing this section will give you the remaining 3% of the assignment marks. In this task, you will extend your knowledge learned from k-d tree to k-d forest. The process for a simplified k-d forest given N input-output pairs is:

1. Randomly select a set of N' distinct samples (i.e., no duplicates) where N' = N' * 80% (round to integer). This dataset is used for constructing a k-d tree (i.e., the root node of the k-d tree)

 

2. Build a k-d tree on the dataset from (1) and apply Algorithm 1.

3. Repeat (1) and (2) until reaching the maximum number of trees.

This process is also shown in Algorithm 2. In k-d forest learning, a sample set is used to construct a k-d tree. That is to say, different trees in the forest could have different root data. For prediction, the k-d forest will choose the most voted label as its prediction. For the wine quality prediction task, you shall apply Algorithm 2 for k-d forest learning and apply Algorithm 3 to predict the wine quality for a new wine sample. To generate samples, please use the following (incomplete) code to generate the same samples as our testing scripts:

import random ... N= ... N’=... index_list = [i for i in range(0, N)] # create a list of indexes for all data sample_indexes = [] for j in range(0,n_tree): random.seed(rand_seed+j) # random_seed is one of the input parameters subsample_idx = random.sample(index_list, k=N’) # create unique N’ indices sample_indexes = sample_indexes + subsample_id Algorithm 2 KdForest(data, d_list, rand_seed) Require:data in the form. of N input-output pairs ,d_list a list of depth 1: forest ← [] 2: n_trees ← len(d_list) 3: sample_indexes ← N'*n_trees integers with value in [0,N) generated by using above method 4: count ← 0 5: for count < n_trees do 6: sampled_data ← N' data pairs selected by N' indexes from sample_indexes sequentially 7: n = BuildKdTree(sampled_data, d_list[count]) ⇒ Algorithm 1 8: forest.append(n)

 

9: end for 10: return forest Algorithm 3 Predict_KdForest(forest, data) Require: forest is a list of tree roots, data in the form. of attribute values x. 1: labels ← [] 2: for Each tree n in the forest do 3: label ← 1NN search on tree n 4: labels.append(n) 5: end for 6: return the most voted label in labels

2.1 Deliverables

Write your random forest program in Python 3.6.9 in a file called nn_kdforest.py. Your program must be able to run as follows

$ python nn_kdforest.py [train] [test] [random_seed] [d_list]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[random_seed] is the seed value generate random values.

[d_list] is a list of depth values (in Algorithm 2 n_trees==len(d_list))

Given the inputs, your program must learn a random forest (following the prescribed algorithms) using the training data, then predict the quality rating of each wine sample in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

Submit your program in the same way as the submission for Sec. 1. For postgraduates, please submit your learning programs (nn_kdtree.py and nn_kdforest.py) to Assignment 2 - PG. The due date, late submission policy, and code reuse policy are also the same as in Sec 1.

 

2.2 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

2.3 Debugging Suggestions

In addition to Sec. 1.6, another value worth checking when debugging is (but not limited to): the sample_indexes – by setting a random seed, the indexes should be the same each time you run the code

2.4 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 3% of the overall course mark.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代寫FINC5090、代做Python語言編程
  • 下一篇:MGMT20005代寫、c/c++,Python程序代做
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    亚洲第一成人在线| 久久成人久久鬼色| 亚洲蜜臀av乱码久久精品| 中文字幕成人在线观看| 久久精品网站免费观看| 色婷婷久久一区二区三区麻豆| 国产精品久久国产愉拍| 亚洲国产一区二区三区a毛片| 成人精品免费视频| 国产麻豆午夜三级精品| 日韩和欧美一区二区| 日本不卡视频一二三区| 精品毛片乱码1区2区3区| 欧美色图12p| 99热在线精品观看| 91蝌蚪国产九色| 国产精品主播直播| 久久精品国产999大香线蕉| 亚洲高清免费在线| 久久影院视频免费| 国产精品久久久久久福利一牛影视 | 色av综合在线| 亚洲精品三级| 麻豆精品视频| 欧美国产欧美亚州国产日韩mv天天看完整| 欧美高清视频一二三区| 亚洲欧美日韩中文字幕一区二区三区| 欧美三级韩国三级日本三斤| 亚洲国产三级| aaa欧美日韩| 经典三级视频一区| 午夜伊人狠狠久久| 国产精品免费视频一区| 欧美三级视频在线观看| 一区二区三区四区五区视频| 成人网页在线观看| 国产在线精品一区二区三区不卡| 国产精品毛片在线| 国产精品日产欧美久久久久| 激情文学综合丁香| 欧美日本视频在线| 国内精品久久久久影院薰衣草 | 一本一本大道香蕉久在线精品| 欧美亚洲丝袜传媒另类| 国产欧美一区二区三区网站| 亚洲午夜在线观看视频在线| 国产成人精品免费网站| 成人97人人超碰人人99| 亚洲一区二区三区精品动漫| 欧美变态tickling挠脚心| 亚洲一二三级电影| 夫妻av一区二区| 色94色欧美sute亚洲13| 亚洲欧洲av色图| www.av精品| 欧美在线观看视频一区二区| 亚洲精品水蜜桃| av成人免费在线观看| 欧美日韩另类国产亚洲欧美一级| 亚洲美女屁股眼交3| 国产精品红桃| 日本一区二区三区在线观看| 国产精品一区二区你懂的| 欧美亚洲国产bt| 亚洲一区二区欧美激情| 欧美先锋影音| 日本一区二区三区免费乱视频 | 国产精品一区二区久激情瑜伽 | 欧美三区美女| 日韩片之四级片| 国产成人免费视频精品含羞草妖精| 日本韩国欧美三级| 一区二区三区在线视频免费| 国一区二区在线观看| 国产精品视频一二三区| 欧美日韩网址| 亚洲日本一区二区三区| 精品动漫3d一区二区三区免费| 欧美国产精品劲爆| 在线欧美三区| 尤物在线观看一区| 香蕉亚洲视频| 精品一区二区免费视频| 91精品国产综合久久香蕉的特点| 国产美女在线精品| 26uuu久久综合| 国产一级久久| 一个色综合av| 欧美日韩成人综合在线一区二区 | 亚洲一本大道在线| 欧美一区二区三区喷汁尤物| 色综合色狠狠天天综合色| 一区二区久久久久久| 欧美日韩国产高清一区二区三区| 久久精品国产久精国产| 日韩一级片在线播放| 亚洲精品1区2区| 国产伦精一区二区三区| 国产欧美一区二区精品性色| 国产精品久久亚洲7777| 国内精品伊人久久久久av一坑| 欧美激情艳妇裸体舞| 久久国产毛片| 亚洲五月婷婷| 国产高清久久久久| 亚洲免费av网站| 日韩女优毛片在线| 久久久福利视频| 欧美日韩精品免费观看| 久久99精品久久久久久动态图 | 伊人久久亚洲影院| 大胆欧美人体老妇| 免费观看在线色综合| 中文字幕成人av| 欧美性受极品xxxx喷水| 伊人精品视频| 99久久精品免费观看| 蓝色福利精品导航| 中文字幕在线观看一区二区| 欧美日韩国产一区| 91久久精品一区二区二区| 亚洲深夜av| 国产精品老牛| 性娇小13――14欧美| 中文久久精品| 国产精品久久久久久久久久直播 | 91黄色激情网站| 国产一区二区久久| 亚洲国产wwwccc36天堂| 日韩欧美123| 欧美日韩大陆在线| 久久精品观看| 亚洲欧美春色| 久久久久久一区| 色猫猫国产区一区二在线视频| 国产精品一区在线播放| 免费亚洲一区二区| 色94色欧美sute亚洲线路一久| 色先锋aa成人| 日韩一区二区精品葵司在线| 日韩欧美国产麻豆| 中文字幕成人av| 一区二区三区在线影院| 亚洲成人综合在线| 国精品**一区二区三区在线蜜桃| 粉嫩13p一区二区三区| 91在线精品一区二区| 亚洲午夜极品| 欧美一区二区久久| 欧美国产精品专区| 午夜精品久久久久久久久久| 免费在线观看成人av| 国产不卡在线播放| av一区二区不卡| 欧美三级中文字| 亚洲综合999| 91视视频在线观看入口直接观看www| 在线免费观看不卡av| 欧美高清在线视频| 国产91在线|亚洲| 欧美高清视频一二三区| 亚洲综合图片区| 日韩亚洲国产欧美| 国产精品不卡在线观看| 韩国一区二区三区在线观看| 欧美一级夜夜爽| 精品日韩欧美在线| 女女同性精品视频| 亚洲免费毛片网站| 亚洲一区网站| 日本aⅴ亚洲精品中文乱码| 激情五月***国产精品| 日韩一级完整毛片| 国产乱对白刺激视频不卡| 影音先锋亚洲一区| 欧美电影免费观看高清完整版在线观看| 亚洲妇熟xx妇色黄| 夜夜爽99久久国产综合精品女不卡| 日韩一区二区免费视频| 亚洲高清视频在线| 久久国产88| 亚瑟在线精品视频| 在线视频欧美精品| 日韩精品电影一区亚洲| 欧美日韩mv| 自拍偷自拍亚洲精品播放| 91麻豆免费看片| 久久久久国产精品麻豆ai换脸| 99国内精品久久| 国产性做久久久久久| 久久激情综合网| 在线综合亚洲| 亚洲人成7777| 99在线精品观看| 久久国产日韩| 亚洲曰韩产成在线| 国产精品一区二区三区观看| 日韩经典中文字幕一区| 国产精品五区| 欧美精品一区二区三|