91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5328代做、代寫Python程序語言
COMP5328代做、代寫Python程序語言

時間:2024-09-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP5**8 - Advanced Machine Learning
Assignment 1
Due: 19/09/2024, 11:59PM
This assignment is to be completed in groups of 3 to 4 students. It is worth 25%
of your total mark.
1 Objective
The objective of this assignment is to implement Non-negative Matrix Factorization
 (NMF) algorithms and analyze the robustness of NMF algorithms when the
dataset is contaminated by large magnitude noise or corruption. More speciffcally,
you should implement at least two NMF algorithms and compare their robustness.
2 Instructions
2.1 Dataset description
In this assignment, you need to apply NMF algorithms on two real-world face
image datasets: (1) ORL dataset
1
; (2) Extended YaleB dataset
2
.
• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images
per subject). For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details (glasses / no glasses).
All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position. All images are cropped and resized
to 92×112 pixels.
• Extended YaleB dataset: it contains 2414 images of 38 subjects under
9 poses and 64 illumination conditions. All images are manually aligned,
cropped, and then resized to 168×192 pixels.
1https://cam-orl.co.uk/facedatabase.html
2http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
1Figure 1: An example face image and its occluded versions by b × b-blocks with
b = 10, 12, and 14 pixels.
Note: we provide a tutorial for this assignment, which contains example code for
loading a dataset to numpy array. Please ffnd more details in assignment1.ipynb.
2.2 Assignment tasks
1. You need to implement at least two Non-negative Matrix Factorization (NMF)
algorithms:
• You should implement at least two NMF algorithms with at least one
not taught in this course (e.g., L**Norm Based NMF, Hypersurface Cost
Based NMF, L**Norm Regularized Robust NMF, and L2,**Norm Based
NMF).
• For each algorithm, you need to describe the deffnition of the objective
function as well as the optimization methods used in your implementation.
2.
 You need to analyze the robustness of each algorithm on two datasets:
• You are allowed to design your own data preprocessing method (if necessary).

You need to use a block-occlusion noise similar to those shown in Figure
1. The noise is generated by setting the pixel values to be 255 in the
block. You can design your own value for b (not neccessary to be 10, 12
or 14). You are also encouraged to design your own noise other than
the block-occlusion noise.
2• You need to demonstrate each type of noise used in your experiment
(show the original image as well as the image contaminated by noise).
• You should carefully choose the NMF algorithms and design experiment
settings to clearly show the different robustness of the algorithms you
have implemented.
3. You are only allowed to use the python standard library, numpy and
scipy (if necessary) to implement NMF algorithms.
2.3 Programming and External Libraries
This assignment is required to be ffnished by Python3. When you implement
NMF algorithms, you are not allowed to use external libraries which contains
NMF implementations, such as scikit-learn, and Nimfa (i.e., you have to implement
 the NMF algorithms by yourself). You are allowed to use scikit-learn
for evaluation only (please ffnd more details in assignment1.ipynb). If you have
any ambiguity whether you can use a particular library or a function, please post
on canvas under the ”Assignment 1” thread.
2.4 Evaluate metrics
To compare the performance and robustness of different NMF algorithms, we provide
 three evaluation metrics: (1) Relative Reconstruction Errors; (2) Average
Accuracy (optional); (3) Normalized Mutual Information (optional). For all
experiments, you need to use at least one metric, i.e., Relative Reconstruction
 Errors. You are encouraged to use the other two metrics, i.e., Average
Accuracy and Normalized Mutual Information.
• Relative Reconstruction Errors (RRE): let V denote the contaminated
dataset (by adding noise), and Vˆ denote the clean dataset. Let W and H
denote the factorization results on V , the relative reconstruction errors
then can be deffned as follows:
RRE =
∥Vˆ − WH∥F
∥Vˆ ∥F
. (1)
• Average Accuracy: Let W and H denote the factorization results on
V , you need to perform some clustering algorithms (i.e., K-means) with
num clusters equal to num classes. Each example is assigned with the
cluster label (please ffnd more details in assignment1.ipynb). Lastly, you
3can evaluate the accuracy of predictions Ypred as follows:
Acc(Y, Ypred) =
 1
n
Xn
i=1
1{Ypred(i) == Y (i)}.
• Normalized Mutual Information (NMI):
NMI(Y, Ypred) =
2I(Y, Ypred)
H(Y ) + H(Ypred)
,
where I(·, ·) is mutual information and H(·) is entropy.
Note: we expect you to have a rigorous performance evaluation. To provide
an estimate of the performance of the algorithms in the report, you can repeat
multiple times (e.g., 5 times) for each experiment by randomly sampling **% data
from the whole dataset, and average the metrics on different subset. You are also
required to report the standard deviations.
3 Report
The report should be organized similar to research papers, and should contain the
following sections:
• In abstract, you should brieffy introduce the topic of this assignment and
describe the organization of your report.
• In introduction, you should ffrst introduce the main idea of NMF as well
as its applications. You should then give an overview of the methods you
want to use.
• In related work, you are expected to review the main idea of related NMF
algorithms (including their advantages and disadvantages).
• In methods, you should describe the details of your method (including
the deffnition of cost functions as well as optimization steps). You should
also describe your choices of noise and you are encouraged to explain the
robustness of each algorithm from theoretical view.
• In experiment, ffrstly, you should introduce the experimental setup (e.g.,
datasets, algorithms, and noise used in your experiment for comparison).
Second, you should show the experimental results and give some comments.
• In conclusion, you should summarize your results and discuss your insights
for future work.
4• In reference, you should list all references cited in your report and formatted
all references in a consistent way.
The layout of the report:
• Font: Times New Roman; Title: font size 14; Body: font size 12
• Length: Ideally 10 to 15 pages - maximum 20 pages
Note: Submissions must be typeset in LaTex using the provided template.
4 Submissions
Detailed instructions are as follows:
1. The submission contains two parts: report and source code.
(a) report (a pdf ffle): the report should include each member’s details
(student id and name).
(b) code (a compressed folder)
i. algorithm (a sub-folder): your code could be multiple ffles.
ii. data (an empty sub-folder): although two datasets should be inside
the data folder, please do not include them in the zip ffle. We will
copy two datasets to the data folder when we test the code.
2. The report (ffle type: pdf) and the codes (ffle type: zip) must be named
as student ID numbers of all group members separated by underscores. For
example, “xxxxxxxx xxxxxxxx xxxxxxxx.pdf”.
3. OOnly one student needs to submit your report (ffle type: pdf) to Assignment
 1 (report) and upload your codes (ffle type: zip) to Assignment 1
(codes).
4. Your submission should include the report and the code. A plagiarism
checker will be used.
5. You need to clearly provide instructions on how to run your code in the
appendix of the report.
6. You need to indicate the contribution of each group member.
7. A penalty of minus 5 (5%) marks per each day after due (email late submissions
 to TA and conffrm late submission dates with TA). Maximum delay is
10 days, after that assignments will not be accepted.
55 Marking scheme
Category Criterion Marks Comments
Report [80]
 Abstract [3]
•problem, methods, organization.
Introduction [5]
•What is the problem you intend to solve?
•Why is this problem important?
Previous work [6]
•Previous relevant methods used in literature?
Methods [25]
•Pre-processing (if any)
•NMF Algorithm’s formulation.
•Noise choice and description.
Experiments and Discussions [25]
•Experiments, comparisons and evaluation
•Extensive analysis and discussion of results
•Relevant personal reflection
Conclusions and Future work [3]
•Meaningful conclusions based on results
•Meaningful future work suggested
Presentation [5]
•Grammatical sentences, no spelling mistakes
•Good structure and layout, consistent formatting
•Appropriate
citation and referencing
•Use graphs and tables to summarize data
Other [8]
•At the discretion of the marker: for impressing
the marker, excelling expectation,
etc. Examples include clear presentation,
well-designed experiment, fast code, etc.
6Category Criterion Marks Comments
Code [20]
•Code runs within a feasible time
•Well organized, commented and documented
Penalties [−]
•Badly written code: [−20]
•Not including instructions on how to run
your code: [−20]
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero).
7

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做4CM508、SQL編程語言代寫
  • 下一篇:CEG 4136代做、代寫Java/c++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    欧美色图免费看| 最新久久zyz资源站| 999亚洲国产精| 国产精品99精品久久免费| 成人欧美一区二区三区小说| 欧美日韩视频第一区| 日韩午夜av在线| 99久久精品情趣| 久久精品国产亚洲a| 亚洲综合成人在线| 国产精品视频第一区| 91精品国产综合久久久久久漫画| 国产欧美精品| 国产精品分类| 午夜精彩国产免费不卡不顿大片| 激情综合色丁香一区二区| 午夜电影久久久| 亚洲第一搞黄网站| 欧美日韩在线一二三| 91在线一区二区三区| 成人高清视频免费观看| 成人免费视频视频在线观看免费| 国产精品综合av一区二区国产馆| 日本成人在线不卡视频| 亚洲一区二区不卡免费| 中文字幕中文字幕在线一区| 国产亚洲成aⅴ人片在线观看| 日韩免费高清av| 久久久久国产精品麻豆| 91在线国产福利| 欧美成人午夜| 亚洲黄页一区| 亚洲在线视频| 欧美日韩高清一区二区| 精品国产91乱码一区二区三区| 久久免费看少妇高潮| 中文字幕一区二区三区乱码在线| 国产精品日韩成人| 亚洲国产精品人人做人人爽| 性做久久久久久久免费看| 久久激情五月激情| 北条麻妃国产九九精品视频| 欧美激情五月| 欧美中文字幕| 日韩欧美中文字幕制服| 国产精品高潮久久久久无| 亚洲国产精品精华液网站| 美女高潮久久久| 91免费版pro下载短视频| 一本不卡影院| 91精品国产乱码| 国产精品美女久久久久aⅴ| 亚洲成人免费视频| 国产99久久久精品| 亚洲黄网站黄| 欧美日韩国产综合一区二区三区| 国产三级一区二区三区| 日本欧美一区二区三区乱码| thepron国产精品| 在线一区二区视频| 亚洲欧美在线aaa| 国产成人在线视频免费播放| 国产精品久久久久久模特| 欧美顶级少妇做爰| 亚洲国产乱码最新视频 | 欧美日韩一本到| 亚洲天堂久久久久久久| 成人在线综合网站| 欧洲国产伦久久久久久久| 国产精品久久一级| 日韩无一区二区| 一区二区三区在线视频免费 | 久久天堂av综合合色蜜桃网| 日韩**一区毛片| 国产一区二区久久久| 国产日韩精品一区二区浪潮av| 狠狠v欧美v日韩v亚洲ⅴ| 性色一区二区三区| 国产精品国产三级国产专播品爱网| 欧美aa在线视频| 久久久久久网| 亚洲午夜久久久久中文字幕久| 欧美视频网站| 中文字幕中文乱码欧美一区二区| 99国产精品久久久久久久久久| 欧美专区日韩专区| 五月综合激情日本mⅴ| av不卡免费看| 依依成人精品视频| 性xx色xx综合久久久xx| 亚洲主播在线播放| 久久一日本道色综合久久| 亚洲一区二区三区自拍| 麻豆精品视频| 蜜桃视频一区二区三区在线观看| 精品视频999| 成人毛片老司机大片| 久久综合九色综合欧美98 | 亚洲国产精品99久久久久久久久| 99久久伊人网影院| 国产女同互慰高潮91漫画| 欧美一区激情视频在线观看| 国产精品色哟哟| 久久久www免费人成精品| 欧美色图首页| 亚洲欧美区自拍先锋| 免费国产自线拍一欧美视频| 老司机一区二区| 欧美岛国在线观看| 国模精品娜娜一二三区| 亚洲aaa精品| 欧美一区二区三区的| 粉嫩一区二区三区在线看| 日韩美女视频在线| 亚洲欧洲精品一区| 久国产精品韩国三级视频| 国产亚洲成aⅴ人片在线观看| 亚洲免费大片| 国产精品一区二区三区99| 国产视频不卡一区| 色婷婷综合中文久久一本| 91片在线免费观看| 免费人成在线不卡| 国产精品女同互慰在线看| 欧美少妇一区二区| 一区精品在线| 成人av电影免费在线播放| 亚洲一区二区偷拍精品| 欧美mv日韩mv国产| 欧美日韩国产综合一区二区| 在线观看欧美亚洲| 国产成人午夜精品影院观看视频 | 久久国产精品99精品国产| 中文字幕一区二区三区精华液 | 伊人激情综合| 99re这里只有精品首页| 久久精品国产亚洲5555| 一区二区三区免费观看| 国产精品欧美极品| 日韩欧美高清在线| 在线电影欧美成精品| 久久久夜精品| 亚洲综合另类| 在线一区视频| 在线观看成人av| 国产精品啊啊啊| 欧美日本免费| 很黄很黄激情成人| 欧美日韩妖精视频| 亚洲特色特黄| 雨宫琴音一区二区在线| 欧美一二三在线| 色噜噜久久综合| 久久视频一区| 在线精品视频一区二区三四| 久久久国产亚洲精品| 亚洲欧美网站| 麻豆久久精品| 欧美日免费三级在线| 欧美性xxxxx极品少妇| 色屁屁一区二区| 久久亚裔精品欧美| 欧美亚洲高清一区| 欧美一级电影网站| 久久精品亚洲国产奇米99| 国产精品美女久久久久久久网站| 中文字幕一区二区视频| 欧美激情一区二区三区四区| 国产精品无遮挡| 国产精品你懂的在线| 91精品办公室少妇高潮对白| 欧洲色大大久久| 综合分类小说区另类春色亚洲小说欧美 | 看电视剧不卡顿的网站| 97se亚洲国产综合自在线| 亚洲精品一区二区三区樱花 | 午夜伦理一区二区| 国产精品18久久久久久久网站| jizzjizzjizz欧美| 亚洲欧洲一区| 91麻豆精品国产91久久久久| 精品福利视频一区二区三区| 亚洲精品网站在线观看| 国产一区中文字幕| 国产日韩免费| 国产欧美一区二区三区在线看蜜臀| 亚洲色图都市小说| 全部av―极品视觉盛宴亚洲| 欧美 日韩 国产精品免费观看| 亚洲永久网站| 国产性做久久久久久| 久久成人久久鬼色| 一区二区av| 精品美女被调教视频大全网站| 午夜精品视频一区| 黄色日韩在线| 国产精品天天看| 日韩av电影天堂| 天天综合色天天综合色h| 美女网站视频久久|