91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫ENG4200、Python/Java程序設計代做
代寫ENG4200、Python/Java程序設計代做

時間:2024-11-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CS1026A代做、Python設計程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    高清免费成人av| 欧美精品国产一区二区| 国产激情视频一区二区三区欧美| www.成人在线| 欧美色123| 欧美一区二区三区久久精品茉莉花 | 日韩va亚洲va欧美va久久| 精品一区二区免费在线观看| 久久激情五月激情| av电影天堂一区二区在线观看| 欧美日韩一区二区视频在线观看| 久久精品亚洲一区二区| 日韩一卡二卡三卡四卡| 欧美国产欧美综合| 韩国v欧美v亚洲v日本v| 欧美色欧美亚洲另类七区| 欧美女孩性生活视频| 久久久精品国产免大香伊| 一区二区三区不卡视频| 精品一区二区三区免费视频| 亚洲三级视频| 91麻豆精品国产91久久久久| 一区二区三区不卡视频在线观看| 国产精品综合av一区二区国产馆| 影音先锋中文字幕一区二区| 日韩欧美一区二区久久婷婷| 亚洲精品少妇30p| 亚洲一级在线观看| 色狠狠色狠狠综合| 国产一区二区免费看| 91丨porny丨国产| 欧美三级乱人伦电影| 国产日产欧产精品推荐色 | 国产成人综合网| 噜噜噜在线观看免费视频日韩| 久久久五月婷婷| 另类小说图片综合网| 伊伊综合在线| 欧美日韩免费高清一区色橹橹| 亚洲图片你懂的| 国产成人午夜视频| 欧美日韩一区二区三区四区| 亚洲欧美日韩一区二区三区在线观看| jizz一区二区| 欧美日韩激情一区| 亚洲一区二区三区四区五区中文| 欧美jizzhd精品欧美喷水 | 在线免费观看欧美| 亚洲专区在线| 欧美一区二区观看视频| 老鸭窝一区二区久久精品| 亚洲黄色成人| 国产精品丝袜91| 国产精品99久久久久久久女警 | 久久久午夜电影| 国产在线精品一区二区三区不卡| 欧洲精品中文字幕| 亚洲综合色噜噜狠狠| 欧美片第1页综合| 久久久久久久性| 国内精品伊人久久久久av影院| 亚洲经典在线看| 国产精品天天看| 国产成人精品午夜视频免费| 色999日韩国产欧美一区二区| 国产精品卡一卡二| 欧美日本韩国在线| 国产精品色婷婷| 91在线国产观看| 国产亚洲综合色| 99re这里只有精品6| 日韩欧美视频在线| av一区二区不卡| 欧美电影免费观看高清完整版在| av欧美精品.com| 欧美videofree性高清杂交| 国产高清在线观看免费不卡| 日韩一区二区免费视频| 国产在线乱码一区二区三区| 欧美日韩国产123区| 国产在线视视频有精品| 亚洲精品一区二区三区樱花| 亚洲一区二区三区中文字幕在线 | 欧美精品一区二区三区久久久| 暴力调教一区二区三区| 91精品国产入口在线| av毛片久久久久**hd| 久久亚洲免费视频| 99re这里只有精品首页| 自拍偷自拍亚洲精品播放| 欧美永久精品| 亚洲欧美色图小说| 销魂美女一区二区三区视频在线| 国产精品久久久久精k8| 久久av一区| 美女mm1313爽爽久久久蜜臀| 欧美一区二区在线看| 成人精品国产一区二区4080| 3d动漫精品啪啪1区2区免费| 99精品视频在线观看免费| 欧美精品一区二区在线观看| 国产欧美一区二区三区另类精品 | 91视频精品在这里| 国产精品第四页| 美日韩在线观看| 久久99精品久久久久久国产越南 | 色先锋久久av资源部| 国产成人自拍在线| 久久久精品综合| 国产欧美高清| 久久精品国产99| 国产三级一区二区三区| 亚洲高清视频一区| 亚洲自拍偷拍综合| 欧美一级日韩免费不卡| 欧美jizzhd精品欧美喷水| 男女男精品视频| 91麻豆精品国产91久久久久久久久 | 日韩欧美一区二区三区在线| 日韩午夜在线| 久草在线在线精品观看| 1024精品合集| 在线免费观看一区| 国产伊人精品| 日韩主播视频在线| 国产人成一区二区三区影院| 久久九九国产| 久久精品av麻豆的观看方式| 综合色中文字幕| 欧美色图天堂网| 一本一本久久a久久精品综合妖精| 美女视频黄a大片欧美| 亚洲欧洲国产日韩| 欧美日产在线观看| av欧美精品.com| 日本在线不卡视频| 制服.丝袜.亚洲.另类.中文| 国产一区二区三区成人欧美日韩在线观看| 久久精品国产久精国产| 亚洲一区在线观看网站| 日韩一区二区三区免费看| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 久久久高清一区二区三区| 久久久久久久波多野高潮日日| 欧美日韩一区二区三区在线视频| 免费亚洲电影在线| 亚洲国产色一区| 久久久三级国产网站| 欧美疯狂做受xxxx富婆| 国产精品一区亚洲| 极品少妇一区二区| 视频一区视频二区中文| 国产欧美一区二区精品性| 日韩免费一区二区| 免费看亚洲片| 99视频在线精品国自产拍免费观看| 国产激情视频一区二区在线观看| 日韩精品高清不卡| 国产精品国产三级国产三级人妇 | 国产亚洲一本大道中文在线| 日韩欧美在线不卡| 色婷婷亚洲一区二区三区| www.亚洲色图.com| 国产呦萝稀缺另类资源| **性色生活片久久毛片| 久久综合色综合88| 91精品国产aⅴ一区二区| 欧美性生活一区| 午夜影院日韩| 色婷婷激情一区二区三区| 亚洲美女一区| 亚洲欧洲日韩综合二区| 欧美不卡三区| 色综合久久中文字幕| 成人av网址在线| 日韩国产成人精品| 亚洲国产日日夜夜| 久久色视频免费观看| 久久蜜桃av一区精品变态类天堂 | 精品久久久久久久久久久久包黑料| 91精品在线免费| 欧美手机在线视频| 欧美日本乱大交xxxxx| 色婷婷国产精品| 欧美人伦禁忌dvd放荡欲情| 在线免费观看日本一区| 欧美日韩国产小视频| 欧美性色欧美a在线播放| 国产传媒欧美日韩成人| 99在线热播精品免费| 成人免费高清在线观看| 欧美日韩一区二区高清| 欧美日韩99| 欧美亚州在线观看| 欧美午夜在线| 1024成人| 中文亚洲字幕| 亚洲免费综合| 欧美日韩国产综合视频在线| 国产一区日韩欧美|