91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MATH38161、代做R程序設(shè)計(jì)
代寫MATH38161、代做R程序設(shè)計(jì)

時(shí)間:2024-11-25  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:代寫ECE 36800、代做Java/Python語(yǔ)言編程
  • 下一篇:ESTR1002代做、代寫C/C++設(shè)計(jì)編程
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    国产精品久久看| 久久精品中文字幕一区二区三区| 日韩视频在线一区二区三区| 91成人免费在线| 欧美电影免费观看高清完整版在线观看| 国产日韩欧美麻豆| 丝袜亚洲精品中文字幕一区| 成人福利视频在线看| 乱码第一页成人| 久久综合九色综合欧美亚洲| 无吗不卡中文字幕| 99久久99久久精品免费观看| 麻豆91精品| 中文字幕va一区二区三区| 天堂蜜桃一区二区三区| 欧美日韩大片一区二区三区| 欧美日韩国产精品成人| 亚洲激情五月婷婷| 99精品桃花视频在线观看| 久热国产精品| 亚洲欧洲一区二区三区| 国产成人精品在线看| 乱码第一页成人| 国产精品免费人成网站| 国产成人午夜片在线观看高清观看 | 激情久久久久久| 在线播放中文一区| 亚洲成人动漫av| 激情欧美一区二区三区| 日韩免费视频一区二区| 麻豆精品一区二区综合av| 亚洲美女毛片| 欧美激情中文字幕一区二区| 成人性生交大合| 欧美自拍丝袜亚洲| 亚洲一二三四在线观看| 亚洲夜间福利| 中文字幕精品在线不卡| 成人精品国产一区二区4080| 在线播放中文一区| 美女诱惑一区二区| 久久午夜激情| 亚洲一二三四久久| 亚洲精品少妇| 亚洲人xxxx| 黄色国产精品| 国产精品高清亚洲| 99re这里都是精品| 2023国产精品视频| 懂色av一区二区夜夜嗨| 欧美精品777| 韩国理伦片一区二区三区在线播放| 久久久久高清| 秋霞成人午夜伦在线观看| 色悠悠久久综合| 天堂在线亚洲视频| 久久久夜夜夜| 日韩精品乱码免费| 色婷婷综合中文久久一本| 午夜精品久久久| 一本色道**综合亚洲精品蜜桃冫| 亚欧色一区w666天堂| 久久香蕉精品| 美国十次了思思久久精品导航| 色吊一区二区三区| 精品一区二区在线看| 欧美日韩精品系列| 国产传媒一区在线| 2024国产精品视频| 国产精品v日韩精品v欧美精品网站| 国产精品免费视频一区| 99精品热视频只有精品10| 亚洲国产va精品久久久不卡综合| 久久久久久精| 激情六月婷婷久久| 欧美成人女星排名| 欧美精品一区二区三区在线看午夜| 国产精品热久久久久夜色精品三区| 精品av久久久久电影| 亚洲资源在线观看| 日本韩国精品一区二区在线观看| 国内成人免费视频| 精品国产电影一区二区| 国自产拍偷拍福利精品免费一 | 欧美日韩免费视频| 成人深夜视频在线观看| 中文字幕欧美激情一区| 国产亚洲一区在线| 毛片一区二区三区| 2017欧美狠狠色| 99精品99久久久久久宅男| 免费看日韩精品| 欧美草草影院在线视频| 在线精品一区| 九九久久精品视频| 国产亚洲欧美色| 亚洲欧美日韩综合国产aⅴ| 九一九一国产精品| 中文子幕无线码一区tr| 久久国产成人| 成人av在线观| 亚洲成人激情社区| 欧美一级电影网站| 最新日韩av| 国产精品69久久久久水密桃| 国产精品免费免费| 欧美日韩日日摸| 极品尤物久久久av免费看| 日产精品久久久久久久性色| 亚洲精品一区二区三区蜜桃下载| 一区二区三区四区五区精品| 国产在线视视频有精品| 国产精品久久久久久久岛一牛影视 | 婷婷六月综合亚洲| 久久久精品免费观看| 久久综合五月| 欧美午夜欧美| 国产伦精一区二区三区| 曰韩精品一区二区| 欧美成人猛片aaaaaaa| 久久精品毛片| 欧美激情日韩| 国产精品综合在线视频| 亚洲一区二区三区四区五区中文| 欧美成人aa大片| 色视频成人在线观看免| 国产一区二区三区四区老人| 韩国v欧美v亚洲v日本v| 一区二区三区av电影| 337p日本欧洲亚洲大胆精品| 色先锋aa成人| 亚洲日本精品国产第一区| 成人小视频免费在线观看| 日韩和欧美一区二区三区| 国产欧美日韩在线看| 91精品国产色综合久久久蜜香臀| 一道本一区二区| 欧美另类视频在线| 成人一级片网址| 精品在线视频一区| 天堂成人免费av电影一区| 亚洲特级片在线| 国产日韩在线不卡| 日韩久久久精品| 欧美乱熟臀69xxxxxx| 亚洲欧美网站| 一区二区毛片| 亚洲欧洲精品一区二区| 欧美国产免费| 成人黄色777网| 国产99久久久精品| 国产在线精品视频| 青青草成人在线观看| 亚洲一区二区不卡免费| 亚洲免费电影在线| 国产精品女同一区二区三区| 久久免费精品国产久精品久久久久| 欧美一区二区三区啪啪| 欧美日韩精品一区二区在线播放 | 国产一区在线观看视频| 麻豆国产欧美日韩综合精品二区 | 欧美xxxxx牲另类人与| 欧美肥胖老妇做爰| 欧美日韩国产影片| 欧美在线观看18| 欧美在线小视频| 欧美综合色免费| 欧美日韩美女一区二区| 欧美精品色一区二区三区| 欧美专区在线观看一区| 欧美三级欧美一级| 欧美日韩精品一区二区三区蜜桃| 欧美在线播放高清精品| 欧美日韩中文一区| 666欧美在线视频| 在线电影一区二区三区| 欧美一区二区三区成人| 欧美成人女星排名| 亚洲精品在线三区| 久久看人人爽人人| 国产精品萝li| 亚洲黄色小视频| 视频一区在线播放| 精品一区二区在线看| 国产成人午夜电影网| 国产91综合一区在线观看| aaa欧美日韩| 国产综合色产| 亚洲一区二区在| 在线免费观看成人短视频| 欧美另类变人与禽xxxxx| 日韩精品专区在线| 国产欧美日韩一区二区三区在线观看| 国产精品污www在线观看| 亚洲乱码精品一二三四区日韩在线| 一区二区三区中文在线观看| 日韩电影在线看| 岛国一区二区在线观看| 狠狠久久综合婷婷不卡| 久久精品一区二区国产|