91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做 MPHY0041、代寫 C++設(shè)計(jì)編程
代做 MPHY0041、代寫 C++設(shè)計(jì)編程

時(shí)間:2024-12-02  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



 UCL DEPARTMANT OF MEDICAL PHYSICS AND
BIOMEDICAL ENGINEERING
Module Code: Module Title : Coursework Title : Lecturer:
Date Handed out: Student ID (Not Name)
MPHY0041
Machine Learning in Medical Imaging Assessed Coursework
Dr. Andre Altmann
Friday, October 25th 2024
Undergraduate / Postgraduate Assessed Coursework Tracking Sheet
              Submission Instruction: Before the submission deadline, you should digitally submit your source code and generated figures (a single jupyter notebook file including your written answers). In case you submit multiple files, all files need to be combined in one single zip file and submitted on the module page at UCL Moodle.
Coursework Deadline: Friday, November 29th 2024 at 16:00 at UCL Moodle submission section
Date Received
Date Returned to Student:
The Department of Medical Physics and Biomedical Engineering follows the UCL Academic Manual with regards to plagiarism and coursework late submission. UCL Policy on Plagiarism
UCL Policy on Late Submission of Coursework
If you are unable to submit on-time due to extenuating circumstances (EC), please refer to the UCL Policy on Extenuating Circumstances and contact our EC Secretary at medphys.teaching@ucl.ac.uk as soon as possible.
UCL Policy on Extenuating Circumstances
Please indicate what areas of your coursework you particularly would like feedback on:
Mark (%):
Please note that the mark is provisional and could be changed when the exam boards meet to moderate marks.
                
Please note: This is an AI Category 1 coursework (i.e., AI technologies cannot be used to solve the questions): https://www.ucl.ac.uk/teaching-learning/generative-ai-hub/using- ai-tools-assessment.
Please submit a single jupyter notebook file for Exercises 1, 2, and 3. The file should contain code, plots and comments that help the understanding of your answers. You can give your written answers as a Markdown within the jupyter notebook.
The provided jupyter notebook Notebook_MPHY0041_2425_CW1.ipynb contains the individual gap codes/functions for Exercise 2 and the functions provided for Exercise 3. Please use this notebook as the basis for your submission.
1. Load the dataset ‘Dementia_train.csv’ it contains diagnosis (DX), a cognitive score (ADAS13) and two cerebrospinal fluid (CSF) measurements for two proteins: amyloid and tau. There are three diagnostic labels: CN, MCI, and Dementia.
a) Remove MCI subjects from the dataset. Compute means for each of the three
measurements (ADAS13, ABETA, TAU) for the ‘CN’ (𝜇!") and the ‘Dementia’ (𝜇#$)
groups. In addition, compute the standard deviation (ҵ**;) for these three measures
across the diagnostic groups. Assume that the data follow a Gaussian distribution:
   1 %&( *%+ -! 𝑓(w**9;)= ҵ**;√2𝜋Ү**; ' ,
,
with the means and standard deviation as computed above. Compute the decision boundary between the two disease groups for each of the three features (with the prior probabilities 𝜋.! = 𝜋#$ = 0.5).
Load the dataset ‘Dementia_test.csv’ that contains the same information for another 400 participants. After removing people with MCI, use the decision boundaries from above to compute accuracy, sensitivity and specificity for separating CN from Dementia for each of the three features. [8]
b) Using sklearn functions, train a LinearRegression to separate CN from Dementia subjects using ABETA and TAU values as inputs. Generate a scatter plot for ABETA and TAU using different colours for the two diagnostic groups. Compute the decision boundary based on the linear regression and add it to the plot. What is the accuracy, sensitivity and specificity of your model on the test data for separating CN from Dementia? [7]
c) The previous analyses ignored the subjects with MCI. Going back to the full dataset, compute means for all three groups for ABETA and TAU as well as the joint variance-covariance matrix Σ. Use these to compute linear decision boundaries between all pairs of classes (with the prior probabilities 𝜋.! = 𝜋/!0 =
𝜋#$ = 0.33) without using any models implemented in sklearn. Generate a new scatterplot and add the three decision boundaries. What is the accuracy, sensitivity and specificity for separating CN from Dementia with this method?
[10]

2. Here we complete implementations for different machine learning algorithms. The code with gaps can be found in the notebook Notebook_MPHY0041_2425_CW1.ipynb.
a) The function fit_LogReg_IWLS contains a few gaps that need to be filled for the function to work. This function implements Logistic Regression using iterative weighted least squares (IWLS) as introduced in the lectures. Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset (DX column indicates PD status, remaining columns are the features). Use the LogisticRegression implemented in sklearn to train a model on the same data. Make a scatter plot between the coefficients obtained from your implementation and the sklearn model. Comment on the
result.
(Hint: The operator @ can be used for matrix multiplications; the function np.linalg.pinv() computes the pseudo-inverse of the matrix: X-1). [7]
b) The function fit_LogReg_GRAD aims to implement Logistic Regression using gradient descent. However, there are still a few gaps in the code. Complete the computation of the cost (J(β)) as well as the update of the beta coefficients. (Hint: gradient descent aims to minimise the cost; however, Logistic Regression is fitted by maximising the log likelihood). Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset.
Run the training for 3000 iterations with 𝛼 = 0.1. Compare the obtained coefficients to the ones obtained from the IWLS implementation in part a). Comment on the result. [7]
c) The function fit_LogReg_GRAD_momentum aims to implement Logistic Regression using gradient descent with momentum. Extend your solution from (b) and add momentum to the optimization as introduced in the lectures. Use the parameter gamma as the trade-off between momentum and gradient. Train your model on the dataset Syn_Momentum.csv (two inputs X1, X2, and one target y). Run the gradient descent for 100 iterations and compare to the standard gradient descent from (b) also run for 100 iterations (both with 𝛼 = 0.001). How does the Loss evolve over the iterations? Explain your observation. [7]
d) When working with medical data we often encounter biases. This could mean that our target variable (𝑦) is accidentally correlated to another variable (𝑦'). We would like to estimate the model to predict 𝑦, while ignoring the effects introduced by 𝑦'. The trade-off between the objectives can be modified using the parameter 𝛿. Provide a Loss function for this scenario (where both 𝑦 and 𝑦'are fitted using a Logistic Regression). Complete the function fit_LogReg_GRAD_competing, which should implement these logistic regressions with gradient descent. Use the variable delta to implement the trade-off. Load the dataset sim_competitive.csv, it contains two input features (x1, x2) and two output features (y1, y2). Apply your function with different values for 𝛿 (0, 0.5, 0.75, 1.0). Make a scatter plot of the data and add the decision boundaries produced by the four models. [9]

3. This exercise uses T2-weighted MR images of the prostate and surrounding tissue (information here). The task to be solved is to automatically segment the prostate in these images. The input images are gray-scale images with 128x128 pixels (below left) and the output should be a binary matrix of size 128x128, where a 1 indicates the prostate (below right).
The promise1215.zip archive contains three sets of images: training, validation, test. For training, there are 30 MR images paired with their ground truth (i.e., masks). For instance, train/img_02_15.png is the MRI and train/lab_02_15.png is the corresponding ground truth. The function preprocess_img computes a series of filters (raw, sobel, gabor, difference of gaussians, etc.) to be used for the machine learning algorithm. For instance, application to the above image results in the following channels (Figure 1). Use the function provided in create_training_set to randomly sample 1000 patches of size 21x21 from the 30 training images to generate an initial dataset. The resulting dataset is heavily imbalanced (more background patches than target), the function sub_sample is used to generate a random subset of 1000 patches from the entire training data with an approximate 50-50 distribution.
a) Using sklearn, train an SVC model to segment the prostate. Optimize kernel choice (e.g., RBF or polynomial with degree 3) and the cost parameter (e.g., C in the range 0.1 to 1000) using an appropriate variant of cross-validation. Measure performance using the Area Under the ROC Curve (roc_auc) and plot the performance of the kernels depending on the C parameter. (Hint: when SVC seems to take an endless time to train, then change your choice of C parameters; large C parameters ® little regularization ® long training time. E.g., in Colab this took about 30 minutes). [10]
b) Based on your result from a) select the best model parameters and make predictions of the 10 images in the validation dataset. Compute the DICE coefficient and roc_auc for each image. Display the original image, the ground truth, and your segmentations for any 5 images in your validation set. Provide the average DICE coefficient and roc_auc for the entire validation dataset. (Hint: this can take a few minutes per image.) [8]
    
 Figure 1: Feature channels. Numbered from top left to bottom right. (1) raw input image (2) Scharr filter, (3-6) Gabor filter with frequency 0.2 in four directions (7-10) Gabor filter with frequency 0.4 in four directions (1**14) Gabor filter with frequency 0.6 in four directions (15-18) Gabor filter with frequency 0.8 in four directions (19) Local Binary Pattern (LBP) features, and (20) difference of gaussians.
c) Instead of the SVC, train a tree-based ensemble classifier and make predictions for the validation images. Report the average roc_auc and DICE coefficient for the entire validation set. What performs better: the SVC or the tree ensemble? Are tree ensembles or the SVC faster to train and apply? Explain why this is the case.
[7]
d) Use the tree-based ensemble method and explore how the amount of training data (i.e., sub sample size: 500, 1000, 2500, 5000), the patch dimensions (11x11, 17x17, 21x21, 27x27, 31x31) affects the performance on the validation set. [10]
e) As shown in the lectures, post-process your prediction using morphological operations and filters to achieve a better segmentation result. (Hint: some morphological operations are implemented in skimage.morphology; link). Report how your post-processing influences your DICE score on the validation
data. [5]
f) Using your best combination of training data size and patch dimension (from d) and post processing methods (from e), estimate the performance on unseen samples from the test set. Display the original image, the ground truth, and your segmentations for any 5 images in your test set. Provide average DICE coefficient for the entire test set. [5]

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫 CE235、代做 Python 語言編程
  • 下一篇:COMP3173 代做、代寫 Java/c++編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    日韩成人精品在线| 日韩免费电影网站| 欧美一区二区在线看| 欧美国产激情二区三区| 亚洲成人一区在线| 成人性视频免费网站| 夜夜精品视频| 日韩精品在线看片z| 亚洲已满18点击进入久久| 国产精品一区二区免费不卡| 在线成人亚洲| 日韩欧美卡一卡二| 亚洲国产综合色| 99久久精品国产导航| 麻豆av一区二区三区久久| 精品欧美乱码久久久久久| 午夜伦欧美伦电影理论片| 91丨porny丨中文| 久久免费视频一区| 一区二区三区精品| 97精品国产露脸对白| 欧美在线短视频| 亚洲色图在线视频| 99久久久国产精品免费蜜臀| 91国产福利在线| 亚洲女与黑人做爰| 91在线观看成人| 欧美制服丝袜第一页| 亚洲永久免费av| 欧美午夜视频在线| 欧美大胆一级视频| 美日韩一级片在线观看| 国产欧美一区二区三区另类精品| 精品久久久久久久久久久久久久久久久 | 中文一区二区在线观看| 国产成人av一区二区| 色8久久精品久久久久久蜜| 亚洲老妇xxxxxx| 欧美黄免费看| 久久新电视剧免费观看| 国产.精品.日韩.另类.中文.在线.播放| 亚洲综合社区| 亚洲综合自拍偷拍| 亚洲乱亚洲高清| 成人欧美一区二区三区小说| 欧美一区三区二区在线观看| 欧美va日韩va| 成人免费三级在线| 日韩欧美中文一区二区| 国产九色sp调教91| 91精品国模一区二区三区| 精品无人区卡一卡二卡三乱码免费卡 | 337p粉嫩大胆色噜噜噜噜亚洲| 国产一区视频导航| 欧美精品少妇一区二区三区| 久久99精品久久久久| 欧美中文字幕亚洲一区二区va在线 | 欧美日韩国产高清视频| 国产色一区二区| 色综合久久中文综合久久97| 久久综合av免费| 91捆绑美女网站| 国产精品天天摸av网| 欧美性事免费在线观看| 中文字幕制服丝袜成人av| 在线国产精品一区| 亚洲最新视频在线观看| 亚洲影院免费| 奇米色一区二区| 欧美日韩视频不卡| 日本韩国一区二区三区| 亚洲成a人片综合在线| 久久久久久久久久码影片| 日韩av不卡一区二区| 欧美日韩国产高清一区| 国产成人午夜精品影院观看视频| 欧美zozozo| 欧美体内she精视频在线观看| 亚洲国产精品精华液2区45| 亚洲成色最大综合在线| 亚洲一区二区在线播放相泽| 欧洲亚洲精品在线| 粉嫩久久99精品久久久久久夜| 精品成人一区二区| 国产精品久久7| 日韩综合小视频| 制服.丝袜.亚洲.中文.综合| av综合在线播放| 综合在线观看色| 色琪琪一区二区三区亚洲区| 国产一区二区三区四| 国产拍欧美日韩视频二区| 国产精品久久久久久久久久直播| 日本成人在线看| 26uuu色噜噜精品一区二区| 在线看片欧美| 久久国产生活片100| 久久婷婷久久一区二区三区| 在线免费观看欧美| 麻豆精品视频在线| 国产欧美视频一区二区三区| 国产精品手机视频| 国产精品一级片| 亚洲少妇中出一区| 欧美蜜桃一区二区三区| 亚洲私拍自拍| 激情文学综合网| 国产精品麻豆视频| 欧美亚洲高清一区| 国产精品二区影院| 国产尤物一区二区| 亚洲精品ww久久久久久p站| 在线观看91av| 亚洲久久成人| 波多野结衣一区二区三区 | 在线免费观看视频一区| 91蝌蚪porny九色| 美日韩一区二区三区| 国产精品久久久久久久久免费相片 | 夜夜精品视频一区二区| 欧美不卡123| 91久久一区二区| 黄色一区二区三区四区| 国产一区二区三区四区在线观看| 亚洲日本韩国一区| 日韩你懂的电影在线观看| 欧美中文字幕| 欧美日韩在线不卡一区| 激情小说亚洲一区| 亚洲成人先锋电影| 国产精品免费视频一区| 制服丝袜日韩国产| 久久午夜av| 亚洲国产日韩综合一区| www.亚洲在线| 狠狠色伊人亚洲综合成人| 一区二区三区精品在线观看| 国产欧美日韩综合| 日韩欧美在线1卡| 欧美色图一区二区三区| 亚洲一区三区电影在线观看| 欧美日本亚洲| av毛片久久久久**hd| 狠狠色狠狠色综合日日91app| 亚洲线精品一区二区三区八戒| 中文字幕欧美三区| 2023国产精华国产精品| 6080午夜不卡| 欧美性色aⅴ视频一区日韩精品| 国产精品普通话对白| 亚洲承认在线| 黄色日韩在线| 午夜激情一区| 色综合一区二区| a美女胸又www黄视频久久| 国产.欧美.日韩| 国产乱国产乱300精品| 蓝色福利精品导航| 麻豆精品一二三| 青青草97国产精品免费观看无弹窗版 | 国产精品porn| 欧美精品aa| 欧美日韩视频一区二区三区| 不卡高清视频专区| jlzzjlzz欧美大全| 白白色 亚洲乱淫| 成人性生交大片免费看中文网站| 国产综合成人久久大片91| 国产一区二区主播在线| 国产乱人伦精品一区二区在线观看 | 欧美影视一区在线| 欧美午夜寂寞影院| 欧美日韩国产美女| 91精品国产免费| 欧美精品一区二区三区在线 | 亚洲久久一区| 欧美亚洲免费高清在线观看| 免费在线成人| 色av一区二区| 欧美电影在线免费观看| 91精品国产综合久久香蕉的特点| 69堂成人精品免费视频| 欧美成人激情免费网| 国产欧美一区二区在线| 国产精品欧美经典| 亚洲激情网站免费观看| 天天操天天综合网| 激情欧美一区二区| 波多野结衣精品在线| 好吊日精品视频| 夜夜嗨一区二区| 在线视频国内自拍亚洲视频| 欧美高清激情brazzers| 精品欧美一区二区三区精品久久 | 免费试看一区| 欧美日韩免费一区二区三区视频| 91精品国产福利| 日本一区二区三区高清不卡| 一区二区三区四区精品在线视频 | 精品成人一区二区三区四区|