91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS1010S、代做Python編程語言
  • 下一篇:STAT4602代寫、代做Java/Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    狠狠色综合色综合网络| 亚洲欧美bt| 99久久国产综合色|国产精品| 久久精品久久综合| 日本vs亚洲vs韩国一区三区| 亚洲成人动漫av| 亚洲成人在线观看视频| 亚洲国产欧美在线人成| 亚洲一区二区三区激情| 天使萌一区二区三区免费观看| 亚洲黄色小视频| 亚洲一区二区三区自拍| 午夜欧美一区二区三区在线播放 | 日韩精品一卡二卡三卡四卡无卡| 一区二区高清免费观看影视大全 | 亚洲成人手机在线| 日韩国产精品91| 精品一区二区久久久| 国产精品18久久久久久vr| 粉嫩一区二区三区性色av| 97aⅴ精品视频一二三区| 国产一区二区中文| 性色一区二区三区| 欧美在线|欧美| 欧美一区二区三区在| 久久亚洲精精品中文字幕早川悠里| 国产亚洲一区二区三区四区| 国产精品国产馆在线真实露脸 | 亚洲国产日韩综合久久精品| 麻豆91在线观看| av电影天堂一区二区在线| 黑丝一区二区三区| 久久亚洲精品欧美| 日韩精品一区二区三区视频| 国产精品免费视频观看| 日韩精品91亚洲二区在线观看 | 久久久av水蜜桃| 欧美xxxxx牲另类人与| 亚洲日本va在线观看| 美女网站一区二区| 91欧美一区二区| 麻豆成人av| 日韩欧美中文一区| 一区二区三区免费在线观看| 久久99精品国产| 国产精品www.| 欧美性大战久久久久久久蜜臀| 精品免费国产一区二区三区四区| 伊人一区二区三区| 懂色中文一区二区在线播放| a91a精品视频在线观看| 欧美日韩国产成人在线91| 国产精品午夜免费| 久久激五月天综合精品| 国产在线精品二区| 欧美一区二区三区思思人| 自拍偷拍国产精品| 国产福利精品导航| 西西人体一区二区| 中文字幕欧美日本乱码一线二线| 美女精品一区二区| 亚洲黄页一区| 精品国产91洋老外米糕| 奇米色一区二区| 亚洲国产合集| 国产午夜亚洲精品午夜鲁丝片 | 国产日韩一区二区| 欧美成人一区二区三区片免费 | 懂色av一区二区三区免费看| 久久亚洲精选| 亚洲一区二区三区四区在线 | 欧美在线观看一区二区| 亚洲免费资源在线播放| 91丨九色丨国产丨porny| 欧美视频在线观看一区| 亚洲午夜日本在线观看| 国产精品国产三级欧美二区| 精品成人私密视频| 国产一区二区三区最好精华液| 久久在线精品| 亚洲国产乱码最新视频| 一区一区视频| 国产精品久久久久久户外露出| 成人看片黄a免费看在线| 欧美日韩www| 麻豆久久久久久| 一本久久综合亚洲鲁鲁五月天| 亚洲激情欧美激情| 亚洲视频二区| 亚洲激情图片一区| 国产欧美一区二区三区另类精品 | 久草在线在线精品观看| 久久精品亚洲| 五月综合激情日本mⅴ| 一区二区福利| 亚洲影视在线播放| 午夜综合激情| 天天色综合成人网| 欧亚洲嫩模精品一区三区| 肉肉av福利一精品导航| 小嫩嫩精品导航| 日韩综合一区二区| 六月丁香综合| 免费成人在线视频观看| 欧美三级日韩在线| 久国产精品韩国三级视频| 制服丝袜成人动漫| 国产不卡一区视频| 精品国产一区a| 女人香蕉久久**毛片精品| 国产欧美一区二区精品久导航| 欧美黄色aaaa| 日韩美女啊v在线免费观看| 亚洲日本欧美在线| 亚洲成精国产精品女| 欧美性一二三区| 国产mv日韩mv欧美| 国产欧美精品国产国产专区| 黄色在线成人| 天天色综合成人网| 91精品国产91久久久久久最新毛片| 成人永久免费视频| 中文字幕第一区二区| 久久av最新网址| 激情综合亚洲精品| 国产网站一区二区三区| 亚洲激情另类| 韩国一区二区三区| 久久五月婷婷丁香社区| 国产午夜精品一区二区三区欧美| 日本免费新一区视频| 欧美白人最猛性xxxxx69交| 一区二区在线视频观看| 美女尤物国产一区| 日本一区二区三区国色天香| 国产一区二区三区黄| 极品少妇xxxx精品少妇| 久久久久久久久久久电影| 免播放器亚洲| 成人手机在线视频| 亚洲精品欧美二区三区中文字幕| 欧美亚洲国产一区二区三区| 97精品国产露脸对白| 亚洲成人免费av| 日韩精品一区二区在线| 一区二区三区四区国产| 国产精品主播直播| 一区二区三区在线免费| 91精品国产91久久久久久一区二区 | 中文字幕综合网| 在线视频综合导航| 99re6这里只有精品视频在线观看 99re8在线精品视频免费播放 | 91麻豆精品国产91久久久| 国产精品多人| 韩国精品免费视频| 亚洲欧美色一区| 欧美sm美女调教| 裸体丰满少妇做受久久99精品| 成人福利视频网站| 婷婷综合另类小说色区| 国产精品私人影院| 69av一区二区三区| 久久av免费一区| 欧美人成在线| 国产电影一区二区三区| 夜夜揉揉日日人人青青一国产精品| 欧美一级午夜免费电影| 久久高清国产| 伊人激情综合| 99久久婷婷国产综合精品 | 999亚洲国产精| 91免费观看国产| 国产揄拍国内精品对白| 亚洲一本大道在线| 国产精品色在线| 精品国产91洋老外米糕| 欧美精品免费视频| 久久中文欧美| 国产精品裸体一区二区三区| 欧美私人啪啪vps| av在线播放不卡| 国产大片一区二区| 免费欧美日韩国产三级电影| 亚洲综合一二区| 亚洲人精品一区| 国产精品国产三级国产三级人妇| 日韩精品在线一区| 欧美精品精品一区| 欧美艳星brazzers| 91福利在线看| 久久久久网站| 久久久蜜桃一区二区人| 99国产精品视频免费观看一公开| 国产综合自拍| 欧美日韩国产精品一卡| 色综合中文字幕国产| 国产91在线|亚洲| 国产99久久久国产精品潘金| 九九**精品视频免费播放| 老司机精品视频一区二区三区|