91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MSE 5760代做、代寫C/C++,Java程序
MSE 5760代做、代寫C/C++,Java程序

時間:2025-05-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MSE 5760: Spring 2025 HW 6 (due 05/04/25)
Topic: Autoencoders (AE) and Variational Autoencoders (VAE)
Background:
In this final homework, you will build a deep autoencoder, a convolutional 
autoencoder and a denoising autoencoder to reconstruct images of an isotropic composite 
with different volume fractions of fibers distributed in the matrix. Five different volume 
fraction of fibers are represented in the dataset and these form five different class labels for 
the composites. After the initial practice with AEs and reconstruction of images using latent 
vectors, you will build a VAE to examine the same dataset. After training the VAE (as best 
as you can using the free colab resources to reproduces images), you will use it to generate 
new images by randomly sampling datapoints from the learned probability distribution of 
the data in latent space. Finally, you will build a conditional VAE to not only generate new 
images but generate them for arbitrary volume fractions of fibers in the composite.
The entire dataset containing 10,000 images of composites with five classes of 
volume fractions of fibers was built by Zequn He (currently a Ph.D. student in MEAM in 
Prof. Celia Reina’s group who helped put together this course in Summer 2022 by designing 
all the labs and homework sets). Each image in the dataset shows three fibers of different 
volumes with circular cross sections. Periodic boundary conditions were used to generate 
the images. Hence, in some images, the three fiber particles may appear broken up into
more than three pieces. The total cross sectional area of all the fibers in each image can, 
however, be divided equally among three fibers. Please do not use this dataset for other 
work or share it on data portals without prior permission from Zequn He
(hezequn@seas.upenn.edu).
Due to the large demands on memory and the intricacies of the AE-VAE 
architecture, the results obtained will not be of the same level of accuracy and quality that 
was possible in the previous homework sets. No train/test split is recommended as all 
10,000 images are used for training purposes. You may, however, carry out further analysis 
using train/test split or by tuning the hyperparameters or changing the architecture for 
bonus points. The maximum bonus points awarded for this homework will be 5.
**********************************Please Note****************************
Sample codes for building the AE, VAE and a conditional GAN were provided in 
Lab 6. There is no separate notebook provided for the homework and students will 
have to prepare one. Tensorflow and keras were used in Lab 6 and is recommended 
for this homework. You are welcome to use other libraries such as pytorch.
************************************************************************
1. Model 1: Deep Autoencoder model (20 points)
Import the needed libraries. Load the original dataset from canvas. Check the 
dimensions of each loaded image for consistency. Scale the images.
1.1 Print the class labels and the number of images in each class. Print the shape of 
the input tensor representing images and the shape of the vector representing the 
class labels. (2 points)
1.1. A measure equivalent to the volume fraction of fibers in each composite image is 
the mean pixel value of the image. As the images are of low-resolution, you may 
notice a slight discrepancy in the assigned class value of the image and the 
calculated mean pixel intensity. As the resolution of images increases, there will be 
negligible difference between the assigned class label and the pixel mean of the 
image. Henceforth, we shall use the pixel mean (PM) intensity of the images to be 
the class label. Print a representative sample of ten images showing the volume 
fraction of fibers in the composite along with the PM value of the image. (3 points)
1.2. Build the following deep AE using the latent dimension value = 64.
(a) Let the first layer of the encoder have 256 neurons.
(b) Let the second layer of the encoder have 128 neurons.
(c) Let the last layer of the encoder be the context or latent vector.
(d) Use ReLU for the activation function in all of the above layers.
(e) Build a deep decoder with its input being the context layer of the encoder.
(f) Build two more layers of the decoder with 128 and 256 neurons, respectively. 
These two layers can use the ReLU activation function.
(g) Build the final layer of the decoder such that its output is compatible with the 
reconstruction of the original input shape tensor. Use sigmoid activation for the 
final output layer of the decoder.
(h) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the AE and train it for at least 50 epochs.
(10 points)
1.3. Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (2 points)
1.4. Plot the first ten reconstructed images showing both the original and reconstructed 
images. (3 points)
2. Model 2: Convolutional Autoencoder model (20 points)
2.1 Build the following convolutional AE with the latent dimension = 64
(a) In the first convolution block of the encoder, use 8 filters with 3x3 kernels, 
ReLU activation and zero padding. Apply max pooling layer with a kernel of 
size 2.
(b) In the second convolution block use 16 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(c) In the third layer of the encoder use 32 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(d) Flatten the obtained feature map and then use a Dense layer with ReLU 
activation function to extract the latent variables.
(d) Build the decoder in the reverse order of the encoder filters with the latent 
output layer of the encoder serving as the input to the decoder part.
(e) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the convolutional AE and train it for at least 
50 epochs.
(10 points)
2.2 Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (5 points)
2.3 Plot the first ten reconstructed images showing both the original and reconstructed 
images. (5 points)
3. Model 3: Denoising convolutional Autoencoder model (15 points)
3.1 Add a Gaussian noise to each image. Choose a Gaussian with a mean of zero and a 
small standard deviation, typically ~ 0.2. Plot a sample of five original images with 
noise. (3 points)
3.2 Use the same convolutional autoencoder as in Problem 2 but with noisy images fed 
to the encoder. Train and display all the information as in 2.2 and 2.3.
(12 points)
4. Model 4: Variational Autoencoder model (25 points)
4.1 Set the latent dimension of the VAE be 64. Build a convolutional autoencoder with 
the following architecture. Set the first block to have 32 filters, 3x3 kernels with 
stride = 2 and zero padding.
4.2 Build the second block with 64 filters, 3x3 kernels, stride =2 and zero padding. Use 
ReLU in both blocks. Apply max pooling layer with kernel of size 2x2.
4.3 Build an appropriate output layer of the encoder that captures the latent space 
probability distribution.
4.4 Define the reparametrized mean and variance of this distribution.
4.5 Build the convolutional decoder in reverse order. Apply the same kernels, stride 
and padding as in the encoder above. Choose the output layer of the decoder and 
apply the appropriate activation function.
4.6 Compile and train the model. Monitor the reconstruction loss, Kullback-Liebler 
loss and the total loss. Plot all three quantities for 500 epochs. (10 points)
4.7 Plot the first ten reconstructed images along with their originals. (5 points)
4.8 Generate ten random latent variables from a standard Gaussian with mean zero and 
unit variance. Display the generated images from these random values of the latent 
vector. Comment on the quality of your results and how it may differ from the input 
images. Mention at least one improvement that can be implemented which may 
improve the results. (3+3+4=10 points)
5. Model 5: Conditional Variational Autoencoder model (20 points)
A conditional VAE differs from a VAE by allowing for an extra input 
variable to both the encoder and the decoder as shown below. The extra label could 
be a class label, ‘c’ for each image. This extra label will enable one to infer the 
conditional probability that describes the latent vector conditioned on the class label 
‘c’ of the input. In VAE, using the variational inference principle, one infers the 
Gaussian distribution (by learning its mean and variance) of the latent vector 
representing each input ‘x’. In conditional VAE, one infers the Gaussian 
conditional distribution of the latent vector conditioned on the extra input variable 
‘label’.
For the dataset used in this homework, there are two advantages of the 
conditional VAE compared to the VAE: (i) the conditional VAE provides a cheap
way to validate the model by comparing the pixel mean of the generated images 
with the conditional class label values (pixel mean) in latent space used to generate 
the images. (ii) The trained conditional VAE can be used to generate images of 
composites with arbitrary volume fraction of fibers with sufficient confidence once 
the validation is done satisfactorily.
A conditional VAE. (source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html)
A good explanation of the conditional VAE in addition to the resource cited in the 
figure above is this: https://agustinus.kristia.de/techblog/2016/12/17/conditional vae/.
A conditional GAN (cGAN) toy problem was shown in Lab 6 where the volume 
fraction (replaced by pixel mean for cheaper model validation) was the design 
parameter, and thus, the condition input into the cGAN. In this question, you will 
build a conditional VAE for the same task of generating new images of composites 
as in Problem 4 by randomly choosing points in the latent space. Since each point 
in the latent space represents a conditional Gaussian distribution, it also has a class 
label. Therefore, it becomes possible to calculate the pixel mean of a generated 
image and compare it with the target ‘c’ value of the random point in latent space. 
It is recommended that students familiarize themselves with the code for providing 
the input to the cGAN with class labels and follow similar logic for building the 
conditional VAE. You may also seek help from the TA’s if necessary.
5.1 Create an array that contains both images and labels (the pixel mean of each image). 
Note the label here is the condition and it should be stored in the additional channel 
of each image.
5.2 Use the same structure, activation functions and optimizer as the one used to build 
the VAE in Problem 4. Print the summary of the encoder and decoder blocks 
showing the output shape of each layer along with the number of parameters that 
need to be trained. (5 points)
5.3 Train the cVAE for 500 epochs. Plot the reconstruction loss, Kullback-Liebler loss 
and the total loss. Plot the first ten reconstructed images along with their originals. 
Include values of the pixel mean for both sets of images. (5 points)
5.4 Generate 10 fake conditions (i.e., ten volume fractions represented as pixel means 
evenly spaced within the range 0.1 to 0.4 as used in Lab 6) for image generation. 
Print the shape of the generated latent variable. Print the target volume fraction (or 
pixel mean). Show the shape of the array that combines the latent variables and fake 
conditions. Print the shape of the generated image tensor. (2 points)
5.5 Plot the 10 generated images. For each image show the generated condition (the 
pixel mean of each image generated in 5.4) and the pixel mean calculated from the 
image itself. (3 points)
5.6 Compare the set of generated images from the conditional VAE with the ones 
obtained in Lab 6 using cGAN. Comment on their differences and analyze the 
possible causes for the differences. (5 points)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做 EEB 504B、代寫 java/Python 程序
  • 下一篇:COMP1117B代做、代寫Python程序設計
  • ·代做CAP 4611、代寫C/C++,Java程序
  • ·代做ISYS1001、代寫C++,Java程序
  • ·代做COMP2221、代寫Java程序設計
  • ·代寫MATH3030、代做c/c++,Java程序
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    欧美老年两性高潮| 国产色产综合色产在线视频| 中国女人久久久| 欧美日韩精品久久| 亚洲欧美影院| 亚洲一级特黄| 亚洲午夜av| 99国产精品99久久久久久粉嫩| 亚洲高清视频一区二区| 影音欧美亚洲| 新狼窝色av性久久久久久| 国产精品亚洲产品| 一本色道**综合亚洲精品蜜桃冫 | 一区二区三区四区五区在线| 亚洲精品一级| 亚洲影音先锋| 欧美性猛交一区二区三区精品| 欧美日韩性生活| 欧美一区二区三级| 久久人人超碰精品| 亚洲色图在线视频| 五月天精品一区二区三区| 丝袜亚洲另类欧美综合| 精品制服美女丁香| jvid福利写真一区二区三区| 亚洲一级影院| 一本色道久久综合亚洲精品按摩 | 亚洲精品久久嫩草网站秘色| 香蕉成人啪国产精品视频综合网 | 影音先锋久久| 在线精品亚洲一区二区不卡| 日韩欧美电影在线| 亚洲欧美在线aaa| 日日骚欧美日韩| 成人福利视频网站| 亚洲福利av| 欧美狂野另类xxxxoooo| 久久这里只精品最新地址| 伊人性伊人情综合网| 久久99精品久久久久婷婷| 欧美激情综合色综合啪啪| 久久亚洲欧美| 2017欧美狠狠色| 亚洲成精国产精品女| 国产成人自拍网| 亚洲国产精品一区在线观看不卡 | 日韩女优av电影| 一区二区成人在线| 成人午夜私人影院| 性色一区二区三区| 久久综合色鬼综合色| 五月开心婷婷久久| 97se狠狠狠综合亚洲狠狠| 久久网站免费| 国产精品视频九色porn| 亚洲aaa精品| 好吊日精品视频| 7777精品伊人久久久大香线蕉超级流畅| 国产精品美女一区二区在线观看| 免费看日韩a级影片| 亚洲天堂成人| 日韩欧美国产小视频| 午夜a成v人精品| 国内精品久久久久久久影视麻豆| 欧美日韩在线亚洲一区蜜芽| 中文字幕一区免费在线观看| 国产一区二区美女| 国产日韩欧美一区| 日本一区二区视频在线| 国模大尺度一区二区三区| 亚洲精品1区| 久久精品夜色噜噜亚洲aⅴ| 蜜桃视频在线观看一区二区| 亚洲国产日本| 久久免费视频色| 国产一区在线精品| 香蕉久久夜色精品| 国产精品久久三区| av电影在线观看一区| 欧美群妇大交群的观看方式| 亚洲一区二区欧美日韩| 亚洲小说欧美另类婷婷| www国产精品av| 国产成人av电影| 欧美日韩激情一区二区| 三级欧美韩日大片在线看| 亚洲欧洲精品一区| 国产日韩欧美精品在线| 成人福利在线看| 日韩精品一区二区三区swag| 国产乱淫av一区二区三区 | 中文字幕字幕中文在线中不卡视频| 丰满少妇久久久久久久| 6080午夜不卡| 韩国理伦片一区二区三区在线播放 | 国产精品影视天天线| 日韩一区二区三区电影在线观看| 美女网站色91| 欧美日韩一级大片网址| 美腿丝袜亚洲三区| 在线欧美一区二区| 麻豆精品在线播放| 欧美日韩大陆在线| 国产一区二区三区| 日韩一区二区麻豆国产| 国产高清久久久| www久久久久| 欧美成人一区二免费视频软件| 国产日韩欧美精品电影三级在线| 欧美不卡高清| 亚洲欧美另类图片小说| 亚洲二区免费| 日韩二区三区四区| 欧美三级中文字幕在线观看| 激情久久久久久久久久久久久久久久 | 欧美日韩精品一区视频| 国产久卡久卡久卡久卡视频精品| 欧美变态tickle挠乳网站| 99久久精品久久久久久清纯| 亚洲国产精品激情在线观看| 在线欧美亚洲| 日韩国产在线观看| 欧美日韩一卡二卡| 成人激情av网| 一区在线播放视频| 一本一道综合狠狠老| 国产一区二区三区香蕉| 成人av高清在线| 中文字幕中文在线不卡住| 欧美成人蜜桃| 色婷婷香蕉在线一区二区| 久久国产精品色婷婷| 日韩区在线观看| 一区国产精品| 免费欧美在线视频| 久久久久久**毛片大全| 国产欧美短视频| 裸体在线国模精品偷拍| 久久夜色精品国产噜噜av| 亚洲精品影视| 国内精品嫩模私拍在线| 国产欧美一区二区精品仙草咪| 99pao成人国产永久免费视频| 久久av资源网| 国产精品美女久久久久久久久久久| 国产精品久久久久9999高清| 激情综合网最新| 国产精品午夜电影| 亚洲女同在线| 色综合天天综合网天天看片| 中文字幕综合网| 国产精品1024久久| 国产精品vip| www.亚洲免费av| 成人精品免费看| 久久这里都是精品| 欧美一区激情| 婷婷综合在线观看| 国产欧美一区二区三区网站 | 亚洲午夜精品一区二区| 蜜桃视频在线观看一区| 亚洲欧美在线观看| 欧美一区二区三级| 久久久999| 在线观看视频免费一区二区三区| 久久69国产一区二区蜜臀| 亚洲欧美一区二区不卡| 精品久久久久av影院| 91久久精品午夜一区二区| 欧美日韩在线不卡一区| 久久精品国产一区二区三 | 91小视频免费看| 久久精品国产成人一区二区三区| 日韩美女啊v在线免费观看| 欧美一区二区三区免费在线看| 国产亚洲精品自拍| 国产精品videossex久久发布| 国产v日产∨综合v精品视频| 日精品一区二区| 亚洲毛片av在线| 中文字幕国产一区| 欧美一二三四在线| 欧美日韩一区中文字幕| 久久久噜噜噜久久狠狠50岁| 亚洲国产婷婷| 狠狠入ady亚洲精品| 成人av综合在线| 久热成人在线视频| 同产精品九九九| 亚洲va欧美va人人爽| 亚洲日本中文字幕区| 国产精品天美传媒沈樵| 久久久蜜桃精品| 精品国产91洋老外米糕| 日韩免费一区二区| 欧美一区三区四区| 在线成人免费视频| 欧美性色欧美a在线播放| 色老头久久综合| 久久蜜桃精品|