91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

ECE371編程代做、代寫(xiě)Python程序設(shè)計(jì)
ECE371編程代做、代寫(xiě)Python程序設(shè)計(jì)

時(shí)間:2025-05-08  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:CPT206代做、代寫(xiě)Java編程語(yǔ)言
  • 下一篇:CSC1002代寫(xiě)、代做Python編程設(shè)計(jì)
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶(hù)要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    国产自产精品| 欧美性感一类影片在线播放| 日韩一区在线播放| av成人激情| 日韩在线一二三区| 欧美日韩午夜在线视频| 国产精品亚洲第一| 欧美激情资源网| 午夜在线一区二区| 国产乱码精品一区二区三区忘忧草| 欧美一级高清片在线观看| www.亚洲人| 亚洲人成在线播放网站岛国| 久久综合激情| 成人国产精品免费网站| 最新国产の精品合集bt伙计| 性久久久久久| 国产很黄免费观看久久| 国产精品嫩草影院av蜜臀| 亚洲综合社区| 国产电影一区在线| 亚洲日韩欧美一区二区在线| 色婷婷国产精品| 99久久99久久精品国产片果冻| √…a在线天堂一区| 在线观看亚洲成人| 欧美不卡一卡二卡免费版| 亚洲一二三区不卡| 欧美一二三四区在线| 亚洲麻豆一区| 国产成人综合在线播放| 亚洲素人一区二区| 欧美日本视频在线| 亚洲电影在线| 韩国女主播成人在线观看| 国产精品久久夜| 欧美日韩国产天堂| 在线日本高清免费不卡| 黑人精品欧美一区二区蜜桃| 一区在线观看免费| 欧美夫妻性生活| 国产欧美日韩综合一区在线观看 | 亚洲国产精品影院| 日韩一区二区三免费高清| 亚洲国产一区二区三区高清| 国产毛片精品视频| 亚洲图片自拍偷拍| 久久久久久久久久看片| 在线亚洲人成电影网站色www| 欧美+日本+国产+在线a∨观看| 日本亚洲最大的色成网站www| 久久精品一二三| 欧美三级乱人伦电影| 99re国产精品| 99re热这里只有精品免费视频| 亚洲福中文字幕伊人影院| 国产偷v国产偷v亚洲高清| 欧美日韩1区2区| 亚洲欧美久久| 亚洲一级黄色| 99久久国产综合精品女不卡| 精品在线观看免费| 亚洲国产日韩一区二区| 国产精品久久综合| 精品国产乱码久久久久久1区2区| 91国偷自产一区二区使用方法| 欧美午夜视频在线| 不卡区在线中文字幕| 麻豆91免费观看| 性做久久久久久久免费看| 最新热久久免费视频| 2021久久国产精品不只是精品| 欧美色中文字幕| 久久国产精品亚洲va麻豆| 亚洲国产精品一区二区第四页av| 91在线视频18| 成人高清视频免费观看| 精一区二区三区| 秋霞成人午夜伦在线观看| 亚洲一区二区成人在线观看| 国产精品久久网站| 久久天堂av综合合色蜜桃网| 欧美一区二区视频免费观看| 欧美性欧美巨大黑白大战| 久久蜜桃精品| 蜜桃久久精品乱码一区二区| 国产精品亚洲一区| 亚洲深爱激情| 在线综合亚洲| 中文精品视频| 亚洲一区精彩视频| 亚洲视频播放| 国产农村妇女精品一区二区| 亚洲精品孕妇| 中国成人在线视频| 国产亚洲在线| 先锋影音国产一区| 麻豆九一精品爱看视频在线观看免费| 亚洲美女色禁图| 亚洲久久一区| 国产精品美女久久久| 亚洲一区二区三区精品在线观看| 亚洲综合欧美| 日本韩国精品一区二区在线观看| 在线影院国内精品| 欧美日本国产一区| 4hu四虎永久在线影院成人| 91精品国产手机| 日韩精品中文字幕一区 | 日韩欧美国产精品一区| 欧美白人最猛性xxxxx69交| 精品国产乱码久久久久久夜甘婷婷 | 91精品国产综合久久婷婷香蕉 | 不卡视频一二三四| 欧美大片专区| 亚洲视频一区| 国产精品日韩欧美一区二区三区 | 欧美精品一区男女天堂| 国产欧美精品国产国产专区 | www.欧美日韩| 国产主播精品| 免费一区视频| 欧美麻豆精品久久久久久| 日韩视频国产视频| 欧美激情一区二区| 一级做a爱片久久| 日本伊人午夜精品| 国产99久久久国产精品| 欧美一区二区三区在线免费观看| 亚洲国产高清一区二区三区| 久久三级视频| 日韩写真欧美这视频| 欧美激情综合在线| 午夜日韩在线电影| 国产乱子伦视频一区二区三区| 91在线一区二区| 一本一本a久久| 日韩成人午夜电影| 日韩和欧美的一区| 久久成人精品无人区| 婷婷丁香久久五月婷婷| 国产一区二区三区在线观看免费视频 | 国产精品麻豆视频| 午夜精品久久久久久久蜜桃app| 激情都市一区二区| 午夜激情一区| 久久另类ts人妖一区二区| 日韩美女一区二区三区| 亚洲视频免费看| 国产主播一区二区三区| 欧美日韩精品综合| 91精品1区2区| 亚洲国产精品国自产拍av| 日韩精品欧美精品| 9i在线看片成人免费| 亚洲欧美成人| 精品成人a区在线观看| 亚洲伊人色欲综合网| 国产宾馆实践打屁股91| 亚洲视频大全| 欧美mv和日韩mv国产网站| 一区二区高清视频在线观看| 国产成人在线视频网址| 制服诱惑一区二区| 精品久久久久久久久久久久久久久| 亚洲靠逼com| 国产91在线|亚洲| 国产一区导航| 精品国产露脸精彩对白| 午夜一区二区三区视频| 91浏览器打开| 欧美日韩在线三级| 亚洲柠檬福利资源导航| 成人性生交大片免费看在线播放| 亚洲影院免费| 国产亚洲人成网站| 久久国产福利国产秒拍| 日韩视频精品在线观看| 精品av久久707| 麻豆传媒一区二区三区| 亚洲精品一区二区三区蜜桃久| 日韩精品自拍偷拍| 日本视频中文字幕一区二区三区| 黑人中文字幕一区二区三区| 日韩一级片在线播放| 日韩国产欧美视频| 亚洲激情女人| 国产婷婷一区二区| 国产成人在线视频网站| 在线亚洲一区二区| 亚洲卡通欧美制服中文| 91麻豆精品一区二区三区| 欧美福利视频一区| 青青草成人在线观看| 日韩亚洲不卡在线| 日本一区二区三区在线不卡| 粉嫩嫩av羞羞动漫久久久 | 91搞黄在线观看| 一区二区三区中文在线| 欧美欧美全黄|