91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:4CCS1CS1代做、代寫c/c++,Python程序
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    亚洲日本久久| 国产精品国产三级国产三级人妇| 国产精品欧美久久久久一区二区 | 国产成人在线视频免费播放| 99在线精品免费视频九九视| 久久久久国产一区二区三区四区| 天堂久久久久va久久久久| 国内一区二区三区| 亚洲精品一区二区三区影院| 一区二区三区中文字幕精品精品| 九九视频精品免费| 91久久线看在观草草青青 | 国产成人精品一区二| 制服丝袜亚洲播放| 婷婷久久综合九色国产成人| 国产日韩综合| 日本伊人午夜精品| 欧美在线看片a免费观看| 日韩电影在线观看网站| 国产一区二区三区的电影 | 亚洲精品福利视频网站| 韩国一区二区三区美女美女秀| 国产丝袜欧美中文另类| 韩日午夜在线资源一区二区| 日韩一区在线播放| 久久精品日产第一区二区| 久久精品国产在热久久| 欧美日韩视频第一区| 日av在线不卡| 日本乱码高清不卡字幕| 午夜精品123| 欧美一区二区高清| 九九九久久久精品| 欧美日韩激情一区二区三区| 美女视频一区在线观看| 日韩亚洲欧美中文三级| 欧美 亚欧 日韩视频在线| 亚洲欧美另类综合偷拍| 亚洲专区在线| 成人网男人的天堂| 亚洲午夜精品久久久久久久久| 欧美精品在线一区二区| 国产高清久久久久| 中文字幕av资源一区| 老司机亚洲精品| 91蝌蚪国产九色| 亚洲五码中文字幕| 欧美视频中文字幕| 欧美日本韩国一区二区三区| 日韩有码一区二区三区| 亚洲男同1069视频| 555www色欧美视频| 国产婷婷精品| 在线播放豆国产99亚洲| 国产盗摄一区二区| 一级女性全黄久久生活片免费| 欧美色区777第一页| 国产精品入口66mio| 国内精品久久久久久久97牛牛| 五月天丁香久久| 日韩毛片视频在线看| 国产偷国产偷亚洲高清人白洁| 欧美三级在线视频| 91激情在线视频| 色94色欧美sute亚洲线路二 | 日韩欧美国产综合一区| 欧美日韩美女一区二区| 久久亚洲美女| 色狠狠色噜噜噜综合网| 久久三级视频| 色视频一区二区| 日本精品一级二级| 91精品91久久久中77777| 亚洲一区三区在线观看| 一区二区三区四区国产| 最新日韩在线| 久久精品系列| 在线免费观看日本一区| 欧美精品在线观看播放| 日韩欧美成人一区二区| 久久久91精品国产一区二区三区| 久久噜噜亚洲综合| 亚洲少妇屁股交4| 午夜精品福利一区二区蜜股av| 亚洲卡通动漫在线| 香蕉成人伊视频在线观看| 久久久久99精品国产片| 欧美videossexotv100| 亚洲精品精品亚洲| 午夜精品一区在线观看| 美国三级日本三级久久99| 国产成人aaaa| 最新成人av网站| 欧美在线你懂的| 欧美成人三级在线| 中文字幕不卡三区| 日韩电影一区二区三区| 岛国精品在线播放| 一级成人国产| 欧美午夜在线观看| 欧美性感一区二区三区| 日韩欧美一区二区不卡| 久久免费美女视频| 麻豆专区一区二区三区四区五区| 男男成人高潮片免费网站| 欧美激情第8页| 日本韩国一区二区| 中文字幕五月欧美| 国产suv精品一区二区三区| 美女日韩在线中文字幕| 欧美国产精品中文字幕| 亚洲一区二区三区美女| 99久久久国产精品| 欧美日韩免费在线视频| 亚洲乱码中文字幕综合| 国产成人精品午夜视频免费 | 91官网在线免费观看| 亚洲精品在线免费播放| 亚洲大片一区二区三区| 欧美精品福利| 日韩午夜在线影院| 久久狠狠亚洲综合| 国产九九精品| 中文字幕av不卡| 欧美国产先锋| 久久精品亚洲麻豆av一区二区| 丁香六月综合激情| 日韩一级完整毛片| 国产精品亚洲不卡a| 国产欧美一区二区三区在线看蜜臀 | 国产日本欧美一区二区| 成人av电影观看| 久久久亚洲综合| 99久久精品国产网站| 日韩午夜激情视频| 97精品超碰一区二区三区| 欧美大片日本大片免费观看| 国产九色sp调教91| 精品国产一区二区三区四区四| 国产黑丝在线一区二区三区| 日韩一二三区视频| 国内视频精品| 亚洲一二三区在线观看| 91久久奴性调教| 久久99热这里只有精品| 日韩免费在线观看| 9i在线看片成人免费| 久久蜜桃香蕉精品一区二区三区| 成人99免费视频| 亚洲男人都懂的| 欧美中文字幕| 国产伦精品一区二区三区免费迷 | 乱一区二区av| 精品国产一区二区亚洲人成毛片 | 日韩亚洲欧美精品| 久久国产精品色| 久久九九全国免费| 免费在线国产精品| 成人精品国产免费网站| 中日韩av电影| 欧美男男青年gay1069videost | 国产人成精品一区二区三| 精品99视频| 亚洲三级在线免费| 在线不卡一区二区| 在线不卡欧美| 国产综合一区二区| 亚洲婷婷国产精品电影人久久| 久久最新视频| 91在线免费看| 日韩不卡一二三区| 国产精品久久久久久久午夜片 | 香蕉av777xxx色综合一区| 91在线精品一区二区三区| 日产精品久久久久久久性色| 欧美国产日韩在线观看| 555www色欧美视频| 久久riav二区三区| 欧美日韩精品久久| 欧美成人国产| 成人97人人超碰人人99| 国内成人自拍视频| 亚洲第一精品在线| 国产日韩欧美综合一区| 欧美肥妇free| 欧美日韩在线观看一区二区| 色狠狠色狠狠综合| 午夜一区二区三区不卡视频| 亚洲午夜91| 亚洲国产裸拍裸体视频在线观看乱了中文| 国产成人精品亚洲777人妖| 精品系列免费在线观看| 亚洲成人精品在线观看| 亚洲精品午夜久久久| 国产目拍亚洲精品99久久精品| 久久久噜噜噜久久人人看| 国产精品免费丝袜| 亚洲精品国产品国语在线app| 亚洲视频免费观看| 亚洲大片在线观看|