91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    国产欧美日韩一区二区三区| 首页国产欧美日韩丝袜| 国内一区二区三区| 亚洲国产精品影院| 欧美精品v日韩精品v韩国精品v| 狠狠色狠狠色综合系列| 国产丝袜在线精品| 在线看国产日韩| 91一区二区三区在线观看| 国产精品理论在线观看| 在线观看一区日韩| 国产综合婷婷| va亚洲va日韩不卡在线观看| 曰韩精品一区二区| 欧美一级一级性生活免费录像| 亚洲午夜精品国产| 99久久伊人网影院| 美女高潮久久久| 亚洲一区二区三区自拍| 日韩精品专区在线影院观看| 色视频成人在线观看免| 亚洲高清资源综合久久精品| 成人激情av网| 美国十次综合导航| 午夜久久久影院| 亚洲欧美日韩系列| 国产精品成人免费在线| 久久在线免费观看| 日韩欧美一区二区视频| 欧美影视一区二区三区| 嫩草成人www欧美| 9色精品在线| 在线一区欧美| 国产精品毛片| 国产欧美日韩| 一本色道久久综合亚洲91| 美女精品网站| 欧美综合天天夜夜久久| 欧美在线一区二区三区| 久久在线91| 欧美一级日韩一级| 久久久久久久久久电影| 中文字幕一区av| 一区二区三区在线免费视频| 日韩精品一二三区| 久久99国产精品麻豆| www.欧美亚洲| 亚洲国产二区| 欧美色涩在线第一页| 精品少妇一区二区三区在线播放| 精品久久久三级丝袜| 欧美国产丝袜视频| 麻豆一区二区三区| 欧美在线二区| 欧美三级视频在线播放| 国产亚洲福利社区一区| 亚洲第一电影网| 欧美 日韩 国产精品免费观看| 国产日韩欧美一区二区三区在线观看| 在线亚洲精品福利网址导航| 精品福利二区三区| 美腿丝袜亚洲色图| 亚洲精品在线视频观看| 日韩欧美电影一区| 蜜臀精品久久久久久蜜臀| 欧美先锋影音| 欧美一区二区在线免费播放| 亚洲综合色区另类av| 99精品久久久久久| 欧美福利视频一区| 日本成人超碰在线观看| 一本色道久久| 国产精品素人视频| 女女同性精品视频| 2020国产精品| 99国产精品国产精品毛片| 欧美日韩成人综合| 日本va欧美va精品发布| 国产日韩一区欧美| 专区另类欧美日韩| 影音先锋亚洲一区| 中文天堂在线一区| 亚洲黄色天堂| 夜夜亚洲天天久久| 色播五月激情综合网| 亚洲国产精品一区二区久久| 99视频一区| 亚洲成人av一区二区三区| 久久国产主播精品| 五月婷婷欧美视频| 4438x亚洲最大成人网| 国产麻豆精品在线| 日韩欧美区一区二| 成人黄色综合网站| 91精品国产综合久久久久久漫画| 一区二区日韩av| 亚洲在线视频| 秋霞影院一区二区| 狠狠爱www人成狠狠爱综合网| 26uuu精品一区二区| 91一区二区三区在线观看| 日韩精品一区二区三区视频| 国产69精品久久久久毛片| 日韩一级大片在线| 成人晚上爱看视频| 欧美激情一区二区在线| 欧美日韩理论| 亚洲黄一区二区三区| 91国产成人在线| 国产一区二区看久久| 久久人人爽爽爽人久久久| 欧美日本一区二区高清播放视频| 日韩一区在线看| 欧美少妇性性性| 欧美xx69| 日韩一区欧美二区| 精品国产乱码久久| 欧美亚洲不卡| 九色综合狠狠综合久久| 精品国产一区a| 久久久久久久久久久一区| 国产98色在线|日韩| 一区二区三区久久| 亚洲精品一线二线三线| 99热在线精品观看| 国产乱色国产精品免费视频| 国产精品麻豆99久久久久久| 色视频一区二区| 亚洲欧洲精品一区二区| 麻豆精品精品国产自在97香蕉| 中文字幕中文字幕在线一区| 欧美日高清视频| 欧美亚洲三区| 91视频精品在这里| 国产美女视频一区| 麻豆一区二区在线| 欧美激情在线观看视频免费| 欧美日韩精品一区二区三区四区 | 91麻豆精品国产| 麻豆91精品| 性感少妇一区| 一区二区视频欧美| 国产在线欧美| 激情欧美国产欧美| 午夜天堂精品久久久久| 成人国产精品免费观看| 成人精品小蝌蚪| 99在线精品视频| 99视频精品免费视频| 99re视频精品| 色综合中文字幕国产| 国产在线不卡一区| 黄页网站大全一区二区| 国产伦精品一区二区三区视频青涩| 亚洲国产美国国产综合一区二区| 一区二区三区免费在线观看| 亚洲综合无码一区二区| 亚洲精品日产精品乱码不卡| 自拍偷在线精品自拍偷无码专区 | 国产一区二区无遮挡| 黄网站免费久久| 91啪九色porn原创视频在线观看| 欧美精品三区| 在线中文字幕一区| 欧美一二三在线| 国产农村妇女精品| 天堂在线亚洲视频| 国产白丝网站精品污在线入口| 91在线高清观看| 国产精品日本欧美一区二区三区| 老牛国产精品一区的观看方式| 国产日韩欧美一区| 日韩一级片在线播放| 亚洲激情五月婷婷| 国产精品白丝jk黑袜喷水| 女人色偷偷aa久久天堂| 久久亚洲色图| 中文子幕无线码一区tr| 国产精品久久看| 99麻豆久久久国产精品免费| 久久av一区二区三区亚洲| 久久―日本道色综合久久| 男男视频亚洲欧美| 国产日韩欧美三区| 国产欧美日韩在线| 懂色av一区二区三区蜜臀 | 亚洲男同性恋视频| 不卡视频免费播放| 欧美日韩成人综合| 免费精品视频在线| 久热综合在线亚洲精品| 亚洲精品久久久蜜桃| 欧美精品亚洲| 国产精品理论片| 欧美区亚洲区| 国产精品亲子伦对白| 欧美天天视频| 亚洲欧洲色图综合| 国产欧美一区二区色老头| 精品久久人人做人人爱|