91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

MA2552代做、代寫Matlab編程語言

時(shí)間:2023-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設(shè)計(jì)
  • 下一篇:COMP528代寫、代做c/c++編程設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    男人的天堂久久精品| 国产精品初高中精品久久| 亚洲成av人影院| 亚洲乱码日产精品bd| 欧美精品一区二区蜜臀亚洲| 欧美大黄免费观看| 亚洲精品在线电影| 久久久精品2019中文字幕之3| 日韩一卡二卡三卡国产欧美| 欧美一区二区三区在线看| 日韩一级黄色片| 久久久久久久久蜜桃| 国产欧美日本一区视频| 国产精品欧美久久久久无广告| 国产日韩欧美高清| 中文字幕在线观看一区二区| 亚洲欧美电影一区二区| 午夜精品成人在线视频| 日本在线观看不卡视频| 国产一区二区三区黄视频 | 亚洲黄色小说网站| 亚洲成人手机在线| 美女视频一区在线观看| 精品一区二区三区久久| 成人激情动漫在线观看| 欧美激情综合| 国产精品一区二区a| 在线视频欧美区| 精品国产乱码久久久久久闺蜜| 亚洲国产高清在线| 亚洲成人av在线电影| 国产美女精品人人做人人爽| 91亚洲大成网污www| 国产视频久久| 在线成人av网站| 国产精品日韩精品欧美在线| 亚洲国产一区在线观看| 国产一区二区三区免费在线观看| kk眼镜猥琐国模调教系列一区二区 | 最新成人av在线| 奇米影视一区二区三区小说| jlzzjlzz国产精品久久| 国产欧美日韩亚洲| 7777精品久久久大香线蕉| 中文字幕一区av| 久久99精品久久久久久动态图 | 欧美日韩视频在线第一区| 国产视频一区二区在线| 日韩高清不卡在线| 欧美国产先锋| 欧美日韩在线电影| 国产精品国模大尺度视频| 免费高清不卡av| 韩国av一区| 欧美疯狂做受xxxx富婆| 亚洲精品日韩一| 粉嫩av一区二区三区粉嫩 | 中文字幕第一页久久| 美女高潮久久久| 激情综合自拍| 欧美白人最猛性xxxxx69交| 亚洲精品成人天堂一二三| av在线不卡电影| 久久久久久9| 国产精品色在线观看| 国产一区二区三区在线看麻豆| 制服丝袜国产精品| 亚洲欧美日韩中文播放| 国产不卡视频在线播放| 久久久精品五月天| 亚洲视频小说图片| 99国产精品久久久久久久久久| 色欧美乱欧美15图片| 亚洲欧美一区二区不卡| 色综合天天综合网天天看片| 欧美性大战久久久| 亚洲电影一区二区| 在线日韩视频| 国产亚洲成aⅴ人片在线观看 | 国产精品久久久久久模特| 欧美经典一区二区| 极品少妇一区二区三区精品视频 | 国产精品初高中害羞小美女文| 国产黑丝在线一区二区三区| 在线欧美日韩国产| 亚洲成人激情社区| 一区二区三区精品国产| 国产精品无圣光一区二区| 99re亚洲国产精品| 日韩精品一区二区在线观看| 国产在线国偷精品免费看| 色婷婷av一区二区三区软件| 亚洲成av人影院| 久久本道综合色狠狠五月| 亚洲欧美精品午睡沙发| 亚洲国产精品123| 欧美国产乱子伦| 欧美人与禽性xxxxx杂性| 久久久综合精品| 欧美一区二区三区久久精品| 国产日韩精品一区二区三区在线| 成人黄页在线观看| 久久久久久久综合日本| 不卡的av电影在线观看| 久久免费视频色| 色综合久久中文综合久久97| 久久久一区二区三区| 午夜精品视频| 亚洲欧洲性图库| 亚洲精品一品区二品区三品区| 亚洲天堂2014| 国产精品日韩二区| 日本伊人精品一区二区三区观看方式| 久久久一二三| 精品一二线国产| 91精品国产91综合久久蜜臀| 不卡视频一二三四| 中文字幕一区二区三区四区不卡 | 精品伦理精品一区| 欧美日产一区二区三区在线观看| 中文字幕在线观看不卡视频| 国产精品美女xx| 日韩国产精品久久久久久亚洲| 欧美日韩一区高清| 成人午夜又粗又硬又大| 国产精品欧美一区二区三区| 亚洲欧洲国产日韩| 久久久99久久| 在线观看视频日韩| 日本三级韩国三级欧美三级| 欧美一区二区三区四区高清| 99re成人精品视频| 亚洲日本电影在线| 欧美自拍丝袜亚洲| 国产宾馆实践打屁股91| 亚洲欧洲性图库| 色国产精品一区在线观看| 成人精品亚洲人成在线| 亚洲丝袜自拍清纯另类| 欧美亚洲综合另类| 欧美+亚洲+精品+三区| 亚洲成人自拍网| 精品国产乱码久久久久久免费| 红桃视频国产精品| 精品一区二区在线播放| 国产精品欧美经典| 欧美性色aⅴ视频一区日韩精品| 99久久精品费精品国产一区二区| 一区二区三区蜜桃网| 91.麻豆视频| 亚洲精选一区| 国产成人自拍高清视频在线免费播放| 国产精品成人一区二区艾草 | 成人高清视频在线| 亚洲成av人片一区二区梦乃| 欧美mv日韩mv国产| 男女精品网站| 欧美日韩一区二| 久久疯狂做爰流白浆xx| 日本一区二区动态图| 欧美日韩国产123区| 亚洲高清视频一区| 成人一区二区三区在线观看| 亚洲高清视频在线| 久久久久88色偷偷免费| 欧美日韩精品高清| 亚洲激情国产| av不卡在线播放| 奇米精品一区二区三区四区 | 久久不见久久见中文字幕免费| 最新久久zyz资源站| 欧美电视剧在线观看完整版| 亚洲欧美精品| 影音先锋一区| 99久久国产综合精品色伊| 激情深爱一区二区| 亚洲一区av在线| 国产精品女主播在线观看| 欧美一区二区视频在线观看| 日本精品一区二区三区四区的功能| 国产精品sss| 97成人超碰视| 懂色av一区二区夜夜嗨| 美国十次了思思久久精品导航| 一区二区三区中文免费| 国产精品久久久久久亚洲伦 | 一区二区三区在线视频播放| 久久精品综合网| 精品国产一区二区三区忘忧草| 精品视频在线看| 欧日韩精品视频| 久久精品国产99精品国产亚洲性色| 欧美视频网站| 欧美承认网站| 欧美日韩18| 欧美视频四区| 亚洲电影成人| 一区二区三区成人精品| 亚洲美洲欧洲综合国产一区| 亚洲高清激情|