91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    高清不卡一区二区| 亚洲综合99| 风间由美一区二区三区在线观看 | 国产 日韩 欧美大片| 国产一区在线观看视频| 久久精品国产精品亚洲综合| 天天影视涩香欲综合网| 五月天网站亚洲| 裸体在线国模精品偷拍| 精品一区二区三区免费毛片爱| 另类欧美日韩国产在线| 国产九色精品成人porny | 欧美视频精品在线| 精品视频在线免费观看| 3atv在线一区二区三区| 精品久久久影院| 国产精品美女久久久久av爽李琼| 国产精品女同一区二区三区| 亚洲欧美日韩在线播放| 五月天一区二区| 国产精品一线二线三线精华| 99re视频这里只有精品| 伊人久久亚洲影院| 免费日韩视频| 欧美一卡二卡在线| 久久久久青草大香线综合精品| 中文字幕亚洲综合久久菠萝蜜| 亚洲男人都懂的| 麻豆精品在线播放| 94-欧美-setu| 在线亚洲自拍| 欧美精品在线一区二区| 欧美国产成人在线| 视频一区二区三区中文字幕| 国产一区二区剧情av在线| 欧美激情 亚洲a∨综合| 国产精品试看| 日韩欧美国产不卡| 亚洲美腿欧美偷拍| 国产一区中文字幕| 精品91在线| 这里是久久伊人| 亚洲欧洲日产国产综合网| 免费高清在线视频一区·| 97成人超碰视| 在线精品视频小说1| 久久久99精品久久| 日韩精品一二三| 91网站在线观看视频| 久久av免费一区| 国产亚洲人成网站| 日本成人中文字幕在线视频 | 精品国产乱码久久久久久老虎| 一区二区三区中文字幕| 国产不卡视频在线观看| 一区二区三区福利| 精品不卡在线视频| 日本中文一区二区三区| 欧美日韩国产综合视频在线| 欧美日韩精品一区二区三区四区| 1区2区3区国产精品| 成人综合激情网| 久久婷婷人人澡人人喊人人爽| 久久婷婷色综合| 黄页网站大全一区二区| 亚洲欧洲一区二区天堂久久| 日韩欧美亚洲一区二区| 日韩成人一区二区| 日韩视频中文| 久久久不卡网国产精品一区| 激情伊人五月天久久综合| 国产日韩欧美一区在线| 国产目拍亚洲精品99久久精品| 极品销魂美女一区二区三区| 一本色道久久综合亚洲精品不 | 91网站在线播放| 日韩无一区二区| 久久国产视频网| 色香蕉成人二区免费| 亚洲欧美激情在线| 欧美激情一级片一区二区| 日韩欧美一二三四区| 毛片不卡一区二区| 久热综合在线亚洲精品| 亚洲欧美另类久久久精品| 欧美99在线视频观看| 久久男人中文字幕资源站| 国产精品原创巨作av| 欧美精品在线观看一区二区| 蜜桃视频第一区免费观看| 久久久久久九九九九| 亚洲国产毛片aaaaa无费看| 尤物在线精品| 成人欧美一区二区三区| 激情久久久久| 亚洲嫩草精品久久| 亚洲福利久久| 一区二区三区四区蜜桃| 99视频一区| 亚洲一区免费视频| 亚洲一区二区成人| 亚洲一区二区三区视频在线播放| 亚洲欧洲一二三| 亚洲一区二区高清| 免费久久99精品国产自| 天堂影院一区二区| 欧洲av在线精品| 精品系列免费在线观看| 91麻豆精品国产91久久久久久久久| 激情综合网激情| 日韩网站在线看片你懂的| 成人av资源站| 国产精品久久久久久久久久免费看| 欧美精品免费观看二区| 亚洲天堂成人网| 免费在线成人| 蜜臀久久99精品久久久久久9| 欧美三级日本三级少妇99| 国产精品综合二区| 久久综合久色欧美综合狠狠| 国产精品xnxxcom| 一区二区三区中文字幕电影| 久久国产精品一区二区三区| 老鸭窝一区二区久久精品| 91精品久久久久久蜜臀| 欧美一区二区三区另类| 亚洲视频一区二区在线| 美女亚洲精品| 国产精品一线二线三线| 欧美韩国一区二区| 麻豆九一精品爱看视频在线观看免费| 美女视频黄久久| 国产偷国产偷精品高清尤物| 国产区二精品视| 国产一区二区视频在线播放| 国产色产综合产在线视频| 国产欧美日韩亚洲| 国产一区二区免费在线| 国产精品久久综合| 在线看国产日韩| 欧美片第1页综合| 日韩av一区二区三区四区| 亚洲精品一线二线三线无人区| 亚洲每日在线| 国产成人福利片| 亚洲激情六月丁香| 91麻豆精品久久久久蜜臀| 18成人免费观看视频| 国产在线播放一区三区四| 国产精品久久久久久久久晋中 | 亚洲福利专区| 国产99久久精品| 亚洲小少妇裸体bbw| 精品国产一区二区三区忘忧草| 国产伦一区二区三区色一情| 国产91精品一区二区麻豆网站| 伊人色综合久久天天人手人婷| 91精品国产综合久久久久久久久久| 亚洲激情偷拍| 成人h动漫精品一区二区| 日韩影视精彩在线| 国产精品电影一区二区三区| 在线播放欧美女士性生活| 9色国产精品| 91丨porny丨蝌蚪视频| 裸体歌舞表演一区二区| 亚洲黄色av一区| 国产欧美日韩不卡免费| 欧美日韩成人综合在线一区二区| 亚洲免费久久| 午夜精品电影| 国产999精品久久久久久| 日韩精品一二区| 一区二区三区成人| 国产日韩av一区二区| 欧美一区二区免费观在线| 一本大道综合伊人精品热热| 在线免费日韩片| 亚洲欧美一区在线| caoporen国产精品视频| 国产一区二区不卡在线| 人人狠狠综合久久亚洲| 亚洲欧美经典视频| 国产精品久久久久永久免费观看| 欧美一区二区三区小说| 欧美在线观看视频在线| 久久亚洲影院| 国产视频一区欧美| 亚洲精选在线| 在线国产日韩| 亚洲精品综合| 国产情侣久久| 欧美一级久久| 久久精品国产99精品国产亚洲性色| 亚洲美女少妇无套啪啪呻吟| 亚洲人成在线影院| 亚洲国产99| 亚洲视频大全| 蘑菇福利视频一区播放| 美玉足脚交一区二区三区图片|