91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CS444 Linear classifiers

時間:2024-02-29  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當(dāng)前頁
  • 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
  • 下一篇:代寫5614. C++ PROGRAMMING
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    91亚洲男人天堂| 久久久影视传媒| 欧美日韩不卡视频| 久久99热这里只有精品| 欧美三区免费完整视频在线观看| 亚洲综合久久久| 亚洲作爱视频| 精品欧美久久久| 欧美一区二区三区在线免费观看 | 成人在线视频一区| 欧美一区二区三区色| 高清国产一区二区三区| 欧美大片免费久久精品三p| 丰满少妇在线播放bd日韩电影| 欧美疯狂性受xxxxx喷水图片| 国产一区在线观看麻豆| 欧美高清hd18日本| 成人免费看视频| 久久久精品中文字幕麻豆发布| 精品视频免费看| 精品一区二区三区免费毛片爱| 欧美乱妇一区二区三区不卡视频| 国产精品1区2区3区在线观看| 国产东北露脸精品视频| 久久riav二区三区| 蜜臀av一区二区| 91精品国产乱| 国产一区二区91| 成人高清av在线| 国产一区二区三区黄视频| 在线国产电影不卡| 激情欧美一区二区| 日韩欧美一级特黄在线播放| 91丨九色丨黑人外教| 亚洲欧美精品午睡沙发| 红桃视频国产一区| 麻豆高清免费国产一区| 日韩欧美亚洲另类制服综合在线| 欧美另类综合| 亚洲成人福利片| 久久这里只有精品6| 亚洲高清资源综合久久精品| 国内精品久久国产| 中文字幕中文字幕一区二区| 久久xxxx| 成人爱爱电影网址| 亚洲欧洲制服丝袜| 欧美网站一区二区| 99久久精品国产观看| 亚洲一区二区精品3399| 91精品婷婷国产综合久久 | 午夜伦理一区二区| 在线精品视频一区二区| 91影视在线播放| 日韩专区一卡二卡| 精品美女一区二区| 亚洲综合99| 紧缚奴在线一区二区三区| 2020国产精品自拍| 国产在线精品一区二区中文| 免费成人美女在线观看.| 制服丝袜日韩国产| 国产色综合网| 国产盗摄精品一区二区三区在线| 中文字幕综合网| 男人的天堂亚洲在线| 91麻豆国产自产在线观看| 亚洲永久免费视频| 欧美三级日韩在线| av电影一区二区| 亚洲成人免费在线观看| 国产亚洲一区二区三区| 欧洲国内综合视频| 国产精品亚洲一区二区三区妖精| 亚洲精品中文在线观看| 欧美日韩一区二区三区在线看| 在线观看亚洲| 日本不卡123| 亚洲妇女屁股眼交7| 国产亚洲视频系列| 欧美精品在线观看播放| 国产精品地址| 一区二区三区四区五区视频在线观看| 日韩一卡二卡三卡四卡| 性刺激综合网| 亚洲天堂成人| 国产一区二区三区综合| 亚洲资源在线观看| 精品国产乱码久久久久久蜜臀| 午夜综合激情| 伊大人香蕉综合8在线视| 成人免费看黄yyy456| 奇米一区二区三区av| 一区二区三区产品免费精品久久75| 久久久久久久综合色一本| 欧美精品自拍偷拍动漫精品| 久久亚洲午夜电影| 欧美日本精品| 色综合久久中文字幕综合网| 国产麻豆视频精品| 麻豆91免费观看| 亚洲第一主播视频| 久久婷婷国产综合国色天香| 欧美性大战久久久久久久蜜臀| 99视频精品免费观看| 欧美99久久| av电影在线不卡| 国产成人在线电影| 紧缚奴在线一区二区三区| 天天色图综合网| 亚洲观看高清完整版在线观看| 成人欧美一区二区三区小说 | 樱花影视一区二区| ...xxx性欧美| 日韩一区欧美小说| 国产精品久久国产精麻豆99网站 | 亚洲你懂的在线视频| 国产欧美精品日韩区二区麻豆天美| 亚洲国产精品黑人久久久| 久久久噜噜噜久久人人看 | 国产亚洲一区二区三区在线观看 | 亚洲自拍欧美精品| 亚洲一卡二卡三卡四卡| 免费观看30秒视频久久| 蜜乳av一区二区| 国产精品小仙女| 成人听书哪个软件好| 欧美久色视频| 激情一区二区| 久久精彩视频| 欧美亚洲动漫精品| 日韩视频一区二区三区| 欧美成人一区二区三区| 欧美国产精品v| 亚洲卡通动漫在线| 亚洲一区二三区| 欧美精品一区三区在线观看| 中文精品视频一区二区在线观看| 亚洲一区二区三区免费观看| aaa欧美日韩| 国产精品videosex极品| 91久久精品www人人做人人爽| 中日韩男男gay无套| 欧美日韩高清在线| 精品国产亚洲一区二区三区在线观看| 国产精品青草综合久久久久99| 亚洲色图制服丝袜| 免费在线成人网| 国内精品免费在线观看| 国产精品播放| 亚洲综合精品四区| 欧美日韩成人在线一区| 欧美mv日韩mv| 亚洲午夜成aⅴ人片| 秋霞午夜鲁丝一区二区老狼| 99国产精品国产精品毛片| 狠狠色丁香久久综合频道| 色香蕉成人二区免费| 欧美一级夜夜爽| 久久久综合激的五月天| 亚洲欧美aⅴ...| 中文字幕一区二区三区在线不卡| 免费黄网站欧美| 99免费精品视频| 91色综合久久久久婷婷| 亚洲资源av| 日韩一卡二卡三卡| 亚洲欧美视频在线观看视频| 日本最新不卡在线| 国产精品99久| 欧美体内she精视频在线观看| 亚洲午夜黄色| 久久久久久一区| 欧美一级黄色片| 一区二区三区精品视频在线| 国产夫妻精品视频| 日韩视频在线观看国产| 欧美大片在线观看| 亚洲国产成人av网| 成人午夜视频免费看| 国产一区二区三区久久| 欧美一区二区久久| 亚洲成人激情社区| 99久久久精品免费观看国产蜜| 中国女人久久久| 欧美成人精品福利| 亚洲成a人片在线观看中文| 岛国一区二区三区| 午夜在线播放视频欧美| 亚洲精品一区二区三区99| 手机精品视频在线观看| 91一区二区三区在线播放| 一本大道久久精品懂色aⅴ| 久久亚洲精品国产精品紫薇| 亚洲mv在线观看| 91网站在线播放| 欧美色大人视频| 欧美激情资源网| 99久久精品国产毛片| 色欧美片视频在线观看在线视频|