91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫5614. C++ PROGRAMMING

時間:2024-02-29  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
代寫 5614. C++ Programming-留學(xué)生作業(yè)幫 (daixie7.com)


請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代寫CS444 Linear classifiers
  • 下一篇:莆田鞋官方正品入口,這十個官方入口必須收藏
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    91精品国产91久久久久久_国产精品二区一区二区aⅴ污介绍_一本久久a久久精品vr综合_亚洲视频一区二区三区
    精品国产3级a| 国产精品69毛片高清亚洲| 欧美裸体bbwbbwbbw| 欧美私人啪啪vps| 三级一区在线视频先锋| 精品国产乱码久久久久久蜜臀| 国产精品久久久久毛片大屁完整版 | 亚洲日本乱码在线观看| 欧美日韩日日摸| 在线欧美亚洲| 粉嫩在线一区二区三区视频| 一二三四社区欧美黄| 精品国产露脸精彩对白| 色综合久久久久| 欧美日韩在线精品一区二区三区| 另类成人小视频在线| 亚洲视频每日更新| 日韩女优毛片在线| 一本一道综合狠狠老| 国产专区一区| 国产高清精品网站| 亚洲一区二区三区四区在线观看 | 91在线国内视频| 尹人成人综合网| 久久久水蜜桃av免费网站| 欧美videos大乳护士334| 91麻豆精品国产自产在线| 蜜桃av久久久亚洲精品| 日韩一区二区三区在线观看| 欧美日韩aaa| 精品欧美一区二区三区精品久久| 中文字幕一区在线观看| 欧美日韩精品| 国产在线一区二区综合免费视频| 亚洲女爱视频在线| 国产亚洲一区二区三区在线观看| 欧美日韩国产一级| 久久婷婷麻豆| 国产日韩欧美高清免费| 欧美日韩成人一区二区三区| 成人丝袜高跟foot| 精品亚洲成a人| 日韩av电影天堂| 亚洲制服丝袜一区| 欧美久久久一区| 亚洲色图在线播放| 国产成人在线视频播放| 日韩一级不卡| 欧美xxxxx裸体时装秀| 欧美国产综合色视频| 亚洲人成电影网站色mp4| 麻豆精品在线看| 96av麻豆蜜桃一区二区| 欧美一区二区日韩一区二区| 亚洲亚洲人成综合网络| 亚洲国产一区二区三区a毛片| 日韩精品自拍偷拍| 国产精品亚洲第一区在线暖暖韩国 | 国内一区二区视频| 欧美日韩亚洲高清一区二区| 亚洲成人av一区| 欧美日韩国产高清| 国产精品久久久久久亚洲毛片| 91猫先生在线| 国产日韩欧美a| 91视频观看免费| 中文字幕国产一区| 亚洲毛片播放| 亚洲成人激情av| 欧美视频在线一区| 亚洲国产一区二区三区| 国产精品av一区二区| 欧美激情一区二区三区蜜桃视频 | 日韩欧美电影一区| 成人免费视频一区二区| 国产日韩欧美a| 久久亚洲国产精品一区二区| 亚洲精品日韩一| 色婷婷久久久久swag精品 | 亚洲私人黄色宅男| 国产精品一区在线观看乱码 | 韩国成人福利片在线播放| 精品91自产拍在线观看一区| 日韩亚洲精品在线| 亚洲va国产天堂va久久en| 欧美高清视频不卡网| 欧美日韩一区二区高清| 狠狠色2019综合网| 国产精品免费视频网站| 色婷婷国产精品| 波多野结衣视频一区| 亚洲欧美日本韩国| 欧美亚洲高清一区| 99久久国产综合精品女不卡| 日韩黄色片在线观看| 亚洲麻豆国产自偷在线| 男人天堂欧美日韩| 国产精品乡下勾搭老头1| 久久久不卡影院| 国产亚洲一级| 懂色av中文字幕一区二区三区 | 久久精品女人天堂| 99久久99久久综合| 国产精品国产自产拍高清av| 中文字幕第一区第二区| 国产精品嫩草99a| 国产精品美女久久久久久| 欧美日韩一区三区四区| 欧美一区二区网站| 国产婷婷色一区二区三区在线| 精品国产精品网麻豆系列| 欧美高清视频一二三区 | 久久综合色天天久久综合图片| 欧美一级艳片视频免费观看| 88在线观看91蜜桃国自产| 欧美成人a在线| 久久综合九色综合97婷婷| 久久影音资源网| 欧美极品aⅴ影院| 亚洲欧美色一区| 亚洲图片另类小说| 久久99久国产精品黄毛片色诱| 99久久精品国产精品久久| 午夜宅男欧美| 久久精品视频一区| 老司机免费视频一区二区 | 国产精品18久久久久久久久久久久 | 国产精品免费av| 亚洲美女电影在线| 免费成人在线网站| 波多野结衣在线一区| 国产精品美女久久久| 欧美一区二区精品| 亚洲九九爱视频| 蜜桃精品在线观看| 成人激情免费视频| 日本韩国欧美三级| 日韩伦理av电影| fc2成人免费人成在线观看播放| 国产精品分类| 色视频成人在线观看免| 欧美成人vr18sexvr| 亚洲欧美日韩国产一区二区三区| 天天综合天天做天天综合| 国产91丝袜在线播放| 亚洲国产一区二区三区在线播| 日本道色综合久久| 国产午夜精品久久| 久久99精品一区二区三区| 色综合久久中文综合久久牛| 午夜影院日韩| 久久九九影视网| 免费在线看成人av| 最新日韩在线| 精品国产三级a在线观看| 亚洲成人在线观看视频| 91免费在线看| 欧美日韩国产免费一区二区 | 日产欧产美韩系列久久99| 欧美欧美天天天天操| 国模娜娜一区二区三区| 国产精品日韩欧美一区二区三区| 日韩精品在线网站| 久久成人免费日本黄色| 中文日韩在线| 综合激情成人伊人| 91毛片在线观看| 91精品国产美女浴室洗澡无遮挡| 天天综合网天天综合色| 亚洲二区在线| 久久久国产精品午夜一区ai换脸| 麻豆精品一区二区av白丝在线| 亚洲高清视频在线观看| 久久精品夜色噜噜亚洲a∨| 国产精品一线二线三线精华| 欧美午夜一区二区三区| 亚洲国产sm捆绑调教视频 | 欧美96在线丨欧| 久久免费看少妇高潮| 成人黄色一级视频| 精品久久久久久久久久久久包黑料 | 一区二区三区自拍| 欧美日韩精品免费观看视一区二区| 91久久国产综合久久| 亚洲午夜精品在线| 黄色日韩在线| 日韩一区二区视频在线观看| 视频一区在线播放| 国产伦精品一区二区三区照片91| 国产清纯美女被跳蛋高潮一区二区久久w | 日韩高清电影一区| 欧美日韩视频| 欧美丰满高潮xxxx喷水动漫| 亚洲精品一区二区三区香蕉| 亚洲国产高清aⅴ视频| 国产成人av网站| 蜜乳av另类精品一区二区| 日韩中文字幕一区二区三区| 精品99一区二区三区| 麻豆91精品|